Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Magn Reson Med ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624032

RESUMO

PURPOSE: To demonstrate the performance of gradient array coils in minimizing switched-gradient-induced electric fields (E-fields) and improving peripheral nerve stimulation (PNS) thresholds while generating gradient fields with adjustable linearity across customizable regions of linearity (ROLs). METHODS: A body gradient array coil is used to reduce the induced E-fields on the surface of a body model by modulating applied currents. This is achieved by performing an optimization problem with the peak E-field as the objective function and current amplitudes as unknown variables. Coil dimensions and winding patterns are fixed throughout the optimization, whereas other engineering metrics remain adjustable. Various scenarios are explored by manipulating adjustable parameters. RESULTS: The array design consistently yields lower E-fields and higher PNS thresholds across all scenarios compared with a conventional coil. When the gradient array coil generates target gradient fields within a 44-cm-diameter spherical ROL, the maximum E-field is reduced by 10%, 18%, and 61% for the X, Y, and Z gradients, respectively. Transitioning to a smaller ROL (24 cm) and relaxing the gradient linearity error results in further E-field reductions. In oblique gradients, the array coil demonstrates the most substantial reduction of 40% in the Z-Y direction. Among the investigated scenarios, the most significant increase of 4.3-fold is observed in the PNS thresholds. CONCLUSION: Our study demonstrated that gradient array coils offer a promising pathway toward achieving high-performance gradient coils regarding gradient strength, slew rate, and PNS thresholds, especially in scenarios in which linear magnetic fields are required within specific target regions.

2.
Magn Reson Med ; 91(3): 1225-1238, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38013214

RESUMO

PURPOSE: This paper presents a novel computational approach to optimize gradient array performance for a given pulse sequence. Specifically, we propose an electromagnetic (EM) approach that minimizes eddy losses within the cryostat while maintaining key performance parameters such as field linearity, gradient strength, and imaging region's dimension and position. METHODS: High-resolution EM simulations on the cryostat's surface are deployed to compute the net EM fields generated by each element of a gradient array coil at different frequencies. The computed fields are stored and combined for each frequency to form a quadratic vector-matrix-vector computation. The overall time-average eddy power loss within the cryostat assembly for arbitrary pulse sequences is computed using frequency domain superposition. RESULTS: The proposed approach estimates and regulates eddy power losses within the cryostat assembly. When compared to the stray field minimization approach, it can achieve over twice the reduction in eddy power loss. The proposed approach eliminates the need to sample the stray fields on the cryostat surface, which the number and position of the samples would be challenging when designing tunable array coils with capabilities that disrupt field symmetries. Additionally, the loss calculation considers the entire cryostat assembly rather than just the inner cylindrical surface of the warm shield. CONCLUSION: Our findings highlight the efficacy of an on-the-fly tuning method for the development of high-performance whole-body gradient array coils, effectively mitigating eddy losses within the cryostat and minimizing stray fields outside the coil assembly. This approach proves particularly advantageous for array coils with variable feeding currents.


Assuntos
Campos Eletromagnéticos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Desenho de Equipamento
3.
PLoS One ; 18(1): e0280655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36701285

RESUMO

BACKGROUND: Since the advent of magnetic resonance imaging (MRI) nearly four decades ago, there has been a quest for ever-higher magnetic field strengths. Strong incentives exist to do so, as increasing the magnetic field strength increases the signal-to-noise ratio of images. However, ensuring patient safety becomes more challenging at high and ultrahigh field MRI (i.e., ≥3 T) compared to lower fields. The problem is exacerbated for patients with conductive implants, such as those with deep brain stimulation (DBS) devices, as excessive local heating can occur around implanted lead tips. Despite extensive effort to assess radio frequency (RF) heating of implants during MRI at 1.5 T, a comparative study that systematically examines the effects of field strength and various exposure limits on RF heating is missing. PURPOSE: This study aims to perform numerical simulations that systematically compare RF power deposition near DBS lead models during MRI at common clinical and ultra-high field strengths, namely 1.5, 3, 7, and 10.5 T. Furthermore, we assess the effects of different exposure constraints on RF power deposition by imposing limits on either the B1+ or global head specific absorption rate (SAR) as these two exposure limits commonly appear in MRI guidelines. METHODS: We created 33 unique DBS lead models based on postoperative computed tomography (CT) images of patients with implanted DBS devices and performed electromagnetic simulations to evaluate the SAR of RF energy in the tissue surrounding lead tips during RF exposure at frequencies ranging from 64 MHz (1.5 T) to 447 MHz (10.5 T). The RF exposure was implemented via realistic MRI RF coil models created based on physical prototypes built in our institutions. We systematically examined the distribution of local SAR at different frequencies with the input coil power adjusted to either limit the B1+ or the global head SAR. RESULTS: The MRI RF coils at higher resonant frequencies generated lower SARs around the lead tips when the global head SAR was constrained. The trend was reversed when the constraint was imposed on B1+. CONCLUSION: At higher static fields, MRI is not necessarily more dangerous than at lower fields for patients with conductive leads. Specifically, when a conservative safety criterion, such as constraints on the global SAR, is imposed, coils at a higher resonant frequency tend to generate a lower local SAR around implanted leads due to the decreased B1+ and, by proxy, E field levels.


Assuntos
Temperatura Alta , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Próteses e Implantes , Condutividade Elétrica , Ondas de Rádio/efeitos adversos , Imagens de Fantasmas
4.
Magn Reson Med ; 88(6): 2718-2731, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35916334

RESUMO

PURPOSE: An array-based z-gradient coil with a set of programmable power amplifiers can outperform a conventional z-gradient coil and make it highly customizable with a broader range of tunable features. METHODS: A dynamically adjustable imaging volume can be achieved using a pair of independent arrays and a modified optimization procedure based on analytic equations. Two modes of operation are provided: (a) standard mode that resembles a conventional coil; (b) advanced mode, where all performance parameters can be adjusted employing a controllable feeding mechanism. Commercial software is used to demonstrate the validity and feasibility of the proposed coil. RESULTS: Primary and shield array diameters are 24 and 30 cm, both of which comprise 12 bundles of 10 turns copper wires. Maximum feeding voltage/current is 250 V/100 A for all array elements. Four distinct magnetic profiles are provided: (a) conventional profile with 140 mm diameter spherical region of interest, 120 mT/m gradient, and up to 4500 T/m/s slew rate; (b) profile of 200 mT/m, 70 mm region of interest, and up to 6900 T/m/s slew rate; (c) 60 mm axially shifted 70 mm region of interest with 120 mT/m strength and 3600 T/m/s slew rate; and (d) profile of 370 mT/m, 120 mm region of interest, and 3700 T/m/s slew rate when the active shield is reverse fed. CONCLUSION: By using an active-shielded gradient array coil, the magnetic field profile of the imaging volume can be adjusted dynamically, and it can provide new features and a wide range of field profiles for diverse applications in MRI.


Assuntos
Cobre , Imageamento por Ressonância Magnética , Desenho de Equipamento , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Software
5.
Magn Reson Med ; 88(5): 2311-2325, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35781696

RESUMO

PURPOSE: The purpose of this study is to present a workflow for predicting the radiofrequency (RF) heating around the contacts of a deep brain stimulation (DBS) lead during an MRI scan. METHODS: The induced RF current on the DBS lead accumulates electric charge on the metallic contacts, which may cause a high local specific absorption rate (SAR), and therefore, heating. The accumulated charge was modeled by imposing a voltage boundary condition on the contacts in a quasi-static electromagnetic (EM) simulation allowing thermal simulations to be performed with the resulting SAR distributions. Estimating SAR and temperature increases from a lead in vivo through EM simulation is not practical given anatomic differences and variations in lead geometry. To overcome this limitation, a new parameter, transimpedance, was defined to characterize a given lead. By combining the transimpedance, which can be measured in a single calibration scan, along with MR-based current measurements of the lead in a unique orientation and anatomy, local heating can be estimated. Heating determined with this approach was compared with results from heating studies of a commercial DBS electrode in a gel phantom with different lead configurations to validate the proposed method. RESULTS: Using data from a single calibration experiment, the transimpedance of a commercial DBS electrode (directional lead, Infinity DBS system, Abbott Laboratories, Chicago, IL) was determined to be 88 Ω. Heating predictions using the DBS transimpedance and rapidly acquired MR-based current measurements in 26 different lead configurations resulted in a <23% (on average 11.3%) normalized root-mean-square error compared to experimental heating measurements during RF scans. CONCLUSION: In this study, a workflow consisting of an MR-based current measurement on the DBS lead and simple quasi-static EM/thermal simulations to predict the temperature increase around a DBS electrode undergoing an MRI scan is proposed and validated using a commercial DBS electrode.


Assuntos
Estimulação Encefálica Profunda , Estimulação Encefálica Profunda/métodos , Eletrodos , Eletrodos Implantados , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio , Temperatura , Fluxo de Trabalho
6.
Magn Reson Med ; 88(2): 973-985, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35344637

RESUMO

PURPOSE: Providing accurate gradient currents is challenging due to the gradient chain nonlinearities, arising from gradient power amplifiers and power supply stages. This work introduces a new characterization approach that takes the amplifier and power supply into account, resulting in a nonlinear model that compensates for the current droop. METHODS: The gradient power amplifier and power supply stage were characterized by a modified state-space averaging technique. The resulting nonlinear model was inverted and used in feedforward to control the gradient coil current. A custom-built two-channel z-gradient coil was driven by high-switching (1 MHz), low-cost amplifiers (<$200) using linear and nonlinear controllers. High-resolution (<80 ps) pulse-width-modulation signals were used to drive the amplifiers. MRI experiments were performed to validate the nonlinear controller's effectiveness. RESULTS: The simulation results validated the functionality of the state-space averaging method in characterizing the gradient system. The performance of linear and nonlinear controllers in generating a trapezoidal current waveform was compared in simulations and experiments. The integral errors between the desired waveform and waveforms generated by linear and nonlinear controllers were 1.9% and 0.13%, respectively, confirming the capability of the nonlinear controller to compensate for the current droop. Phantom images validated the nonlinear controller's ability to correct droop-induced distortions. CONCLUSION: Benchtop measurements and MRI experiments demonstrated that the proposed nonlinear characterization and digitally implemented feedforward controller could drive gradient coils with droop-free current waveforms (without a feedback loop). In experiments, the nonlinear controller outperformed the linear controller by a 14-fold reduction in the integral error of a test waveform.


Assuntos
Amplificadores Eletrônicos , Imageamento por Ressonância Magnética , Retroalimentação , Imageamento por Ressonância Magnética/métodos , Dinâmica não Linear , Imagens de Fantasmas
7.
Magn Reson Med ; 87(4): 2074-2088, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34825735

RESUMO

PURPOSE: The purpose of this study is to introduce a new antenna element with improved transmit performance, named the nonuniform dielectric substrate (NODES) antenna, for building transmit arrays at ultrahigh-field. METHODS: We optimized a dipole antenna at 10.5 Tesla by maximizing the B1+ -SAR efficiency in a phantom for a human spine target. The optimization parameters included permittivity variation in the substrate, substrate thickness, antenna length, and conductor geometry. We conducted electromagnetic simulations as well as phantom experiments to compare the transmit/receive performance of the proposed NODES antenna design with existing coil elements from the literature. RESULTS: Single NODES element showed up to 18% and 30% higher B1+ -SAR efficiency than the fractionated dipole and loop elements, respectively. The new element is substantially shorter than a commonly used dipole, which enables z-stacked array formation; it is additionally capable of providing a relatively uniform current distribution along its conductors. The nine-channel transmit/receive NODES array achieved 7.5% higher B1+ homogeneity than a loop array with the same number of elements. Excitation with the NODES array resulted in 33% lower peak 10g-averaged SAR and required 34% lower input power than the loop array for the target anatomy of the spine. CONCLUSION: In this study, we introduced a new RF coil element: the NODES antenna. NODES antenna outperformed the widely used loop and dipole elements and may provide improved transmit/receive performance for future ultrahigh field MRI applications.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Coluna Vertebral/diagnóstico por imagem
8.
Magn Reson Med ; 86(3): 1560-1572, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33961301

RESUMO

PURPOSE: Patients with active implants such as deep brain stimulation (DBS) devices are often denied access to MRI due to safety concerns associated with the radiofrequency (RF) heating of their electrodes. The majority of studies on RF heating of conductive implants have been performed in horizontal close-bore MRI scanners. Vertical MRI scanners which have a 90° rotated transmit coil generate fundamentally different electric and magnetic field distributions, yet very little is known about RF heating of implants in this class of scanners. We performed numerical simulations as well as phantom experiments to compare RF heating of DBS implants in a 1.2T vertical scanner (OASIS, Hitachi) compared to a 1.5T horizontal scanner (Aera, Siemens). METHODS: Simulations were performed on 90 lead models created from post-operative CT images of patients with DBS implants. Experiments were performed with wires and commercial DBS devices implanted in an anthropomorphic phantom. RESULTS: We found significant reduction of 0.1 g-averaged specific absorption rate (30-fold, P < 1 × 10-5 ) and RF heating (9-fold, P < .026) in the 1.2T vertical scanner compared to the 1.5T conventional scanner. CONCLUSION: Vertical MRI scanners appear to generate lower RF heating around DBS leads, providing potentially heightened safety or the flexibility to use sequences with higher power levels than on conventional systems.


Assuntos
Estimulação Encefálica Profunda , Eletrodos Implantados , Temperatura Alta , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ondas de Rádio
9.
Magn Reson Med ; 86(3): 1746-1758, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33768600

RESUMO

PURPOSE: In simultaneous transmission and reception (STAR) MRI, along with the coupling of the excitation pulse to the received signal, noise, and undesired distortions (spurs) coming from the transmit chain also leak into the acquired signal and degrade image quality. Here, properties of this coupled noise and its relationship with the transmit amplifier gain, transmit chain noise density, isolation performance, and imaging bandwidth are analyzed. It is demonstrated that by utilizing a recently proposed STAR technique, the transmit noise can be reduced. The importance of achieving high isolation and careful selection of the corresponding parameters are demonstrated. THEORY AND METHODS: A cancellation algorithm, together with a vector modulator, is used for transmit-receive isolation. The scanner is modeled as a pipeline of blocks to demonstrate the noise contribution from each block. With higher isolation, coupled transmit noise can be reduced to the point that the dominant noise source becomes acquisition noise, as in the case for pulsed MRI. Amplifiers with different gain and noise properties are used in the experiments to verify the derived noise-transmit parameter relation. RESULTS: With the proposed technique, more than 80 dB isolation in the analog domain is achieved. The leakage noise and the spurs coupled from the transmit chain, are reduced. It is shown that the transmit gain plays the most critical role in determining sufficient isolation, whereas the amplifier noise figure does not contribute as much. CONCLUSION: The transmit noise and the spurs in STAR imaging are analyzed and mitigated by using a vector modulator.


Assuntos
Amplificadores Eletrônicos , Imageamento por Ressonância Magnética , Desenho de Equipamento , Razão Sinal-Ruído
10.
Magn Reson Med ; 85(3): 1727-1741, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33034125

RESUMO

PURPOSE: To obtain efficient operation modes of transmit array (TxArray) coils using a general design technique based on the eigenmode analysis of the scattering matrix. METHODS: We introduce the concept of modal reflected power and excitation eigenmodes, which are calculated as the eigenvalues and eigenvectors of SH S, where the superscript H denotes the Hermitian transpose. We formulate the normalized reflected power, which is the ratio of the total reflected power to the total incident power of TxArray coils for a given excitation signal as the weighted sum of the modal reflected power. By minimizing the modal reflected power of TxArray coils, we increase the excitation space with a low total reflection. The algorithm was tested on 4 dual-row TxArray coils with 8 to 32 channels. RESULTS: By minimizing the modal reflected power, we designed an 8-element TxArray coil to have a low reflection for 7 out of 8 dimensions of the excitation space. Similarly, the minimization of the modal reflected power of a 16-element TxArray coil enabled us to enlarge the dimension of the excitation space by 50% compared with commonly employed design techniques. Moreover, we demonstrated that the low total reflected power for some critical excitation modes, such as the circularly polarized mode, can be achieved for all TxArray coils even with a high level of coupling. CONCLUSION: Eigenmode analysis is an efficient method that intuitively provides a quantitative and compact representation of the coil's power transmission capabilities. This method also provides insight into the excitation modes with low reflection.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Desenho de Equipamento , Imagens de Fantasmas
11.
NMR Biomed ; 34(1): e4413, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956538

RESUMO

In tomoelastography, to achieve a final wave speed map by combining reconstructions obtained from all spatial directions and excitation frequencies, the use of weights is inevitable. Here, a new weighting scheme, which maximizes the signal-to-noise ratio (SNR) of the final wave speed map, has been proposed. To maximize the SNR of the final wave speed map, the use of squares of estimated SNR values of reconstructed individual maps has been proposed. Therefore, derivations of the SNR of the reconstructed wave speed maps have become necessary. Considering the noise on the complex MRI signal, the SNR of the reconstructed wave speed map was formulated by an analytical approach assuming a high SNR, and the results were verified using Monte Carlo simulations (MCSs). It has been assumed that the noise remains approximately Gaussian when the image SNR is high enough, despite the nonlinear operations in tomoelastography inversion. Hence, the SNR threshold was determined by comparing the SNR computed by MCSs and analytical approximations. The weighting scheme was evaluated for accuracy, spatial resolution and SNR performances on simulated phantoms. MR elastography (MRE) experiments on two different phantoms were conducted. Wave speed maps were generated for simulated 3D human abdomen MRE data and experimental human abdomen MRE data. The simulation results demonstrated that the SNR-weighted inversion improved the SNR performance of the wave speed map by a factor of two compared to the performance of the original (i.e., amplitude-weighted) reconstruction. In the case of a low SNR, no bias occurred in the wave speed map when SNR weighting was used, whereas 10% bias occurred when the original weighting (i.e., amplitude weighting) was used. Thus, while not altering the accuracy or spatial resolution of the wave speed map with the proposed weighting method, the SNR of the wave speed map has been significantly improved.


Assuntos
Técnicas de Imagem por Elasticidade , Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído , Tomografia , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Reprodutibilidade dos Testes
12.
MAGMA ; 34(1): 165-178, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32594275

RESUMO

OBJECTIVE: Accelerating the co-simulation method for the design of transmit array (TxArray) coils is studied using equivalent circuit models. MATERIALS AND METHODS: Although the co-simulation method dramatically reduces the complexity of the design of TxArray coils, finding the optimum solution is not trivial since there exist many local minima in the optimization problem. We propose to utilize an equivalent circuit model of the TxArray coil to obtain a proper initial guess for the optimization process of the co-simulation method. To prove the concept, six different TxArray coils (i.e., three degenerate birdcage coils (DBC), two dual-row head coils, and one elliptical body TxArray coil) with two different loading strategies (cylindrical phantom and human head/body model) at 3 T field strength are investigated theoretically; as an example study, an eight-channel head-DBC is constructed using the obtained values. RESULTS: This approach accelerates the design process more than 20-fold for the coils that are investigated in this manuscript. CONCLUSION: A fast and accurate method for tuning and decoupling of a TxArray coil can be achieved using its equivalent circuit model combined with the co-simulation method.


Assuntos
Cabeça , Imageamento por Ressonância Magnética , Simulação por Computador , Desenho de Equipamento , Humanos , Imagens de Fantasmas
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 6143-6146, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33019373

RESUMO

Patients with deep brain stimulation (DBS) implants are often denied access to magnetic resonance imaging (MRI) due to safety concerns associated with RF heating of implants. Although MR-conditional DBS devices are available, complying with manufacturer guidelines has proved to be difficult as pulse sequences that optimally visualize DBS target structures tend to have much higher specific absorption rate (SAR) of radiofrequency energy than current guidelines allow. The MR-labeling of DBS devices, as well as the majority of studies on RF heating of conductive implants have been limited to horizontal close-bore MRI scanners. Vertical MRI scanners, originally introduced as open low-field MRI systems, are now available at 1.2 T field strength, capable of high-resolution structural and functional imaging. No literature exists on DBS SAR in this class of scanners which have a 90° rotated transmit coil and thus, generate a fundamentally different electric and magnetic field distributions. Here we present a simulation study of RF heating in a cohort of forty patient-derived DBS lead models during MRI in a commercially available vertical openbore MRI system (1.2 T OASIS, Hitachi) and a standard horizontal 1.5 T birdcage coil. Simulations were performed at two major imaging landmarks representing head and chest imaging. We calculated the maximum of 0.1g-averaged SAR (0.1g-SARMax) around DBS lead tips when a B1+ = 4 µT was generated on an axial plane passing through patients body. For head landmark, 0.1g-SARMax reached 220±188 W/kg in the 1.5 T birdcage coil, but only 14±11 W/kg in the OASIS coil. For chest landmark, 0.1g-SARMax was 24±17 W/kg in the 1.5 T birdcage coil and 3±2 W/kg in the OASIS coil. A paired two-tail t-test revealed a significant reduction in SAR with a large effect-size during head MRI (p < 1.5×10-8, Cohen's d = 1.5) as well as chest MRI (p < 6.5×10-10, Cohen's d = 1.7) in 1.2 T Hitachi OASIS coil compared to a standard 1.5 T birdcage transmitter. Our findings suggest that open-bore vertical scanners may offer an untapped opportunity for MRI of patients with DBS implants.


Assuntos
Estimulação Encefálica Profunda , Calefação , Humanos , Imageamento por Ressonância Magnética , Próteses e Implantes , Ondas de Rádio
14.
Magn Reson Med ; 84(6): 3485-3493, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32767392

RESUMO

PURPOSE: In this study, we investigate a strategy to reduce the local specific absorption rate (SAR) while keeping B1+ constant inside the region of interest (ROI) at the ultra-high field (B0 ≥ 7T) MRI. METHODS: Locally raising the resonance structure under the discontinuity (i.e., creating a bump) increases the distance between the accumulated charges and the tissue. As a result, it reduces the electric field and local SAR generated by these charges inside the tissue. The B1+ at a point that is sufficiently far from the coil, however, is not affected by this modification. In this study, three different resonant elements (i.e., loop coil, snake antenna, and fractionated dipole [FD]) are investigated. For experimental validation, a bumped FD is further investigated at 10.5T. After the validation, the transmit performances of eight-channel arrays of each element are compared through electromagnetic (EM) simulations. RESULTS: Introducing a bump reduced the peak 10g-averaged SAR by 21, 26, 23% for the loop and snake antenna at 7T, and FD at 10.5T, respectively. In addition, eight-channel bumped FD array at 10.5T had a 27% lower peak 10g-averaged SAR in a realistic human body simulation (i.e., prostate imaging) compared to an eight-channel FD array. CONCLUSION: In this study, we investigated a simple design strategy based on adding bumps to a resonant element to reduce the local SAR while maintaining B1+ inside an ROI. As an example, we modified an FD and performed EM simulations and phantom experiments with a 10.5T scanner. Results show that the peak 10g-averaged SAR can be reduced more than 25%.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Desenho de Equipamento , Humanos , Masculino , Imagens de Fantasmas , Próstata
15.
Magn Reson Med ; 84(2): 1048-1060, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31961965

RESUMO

PURPOSE: To dynamically minimize radiofrequency (RF)-induced heating of an active catheter through an automatic change of the termination impedance. METHODS: A prototype wireless module was designed that modifies the input impedance of an active catheter to keep the temperature rise during MRI below a threshold, ΔTmax . The wireless module (MR safety watchdog; MRsWD) measures the local temperature at the catheter tip using either a built-in thermistor or external data from a fiber-optical thermometer. It automatically changes the catheter input impedance until the temperature rise during MRI is minimized. If ΔTmax is exceeded, RF transmission is blocked by a feedback system. RESULTS: The thermistor and fiber-optical thermometer provided consistent temperature data in a phantom experiment. During MRI, the MRsWD was able to reduce the maximum temperature rise by 25% when operated in real-time feedback mode. CONCLUSION: This study demonstrates the technical feasibility of an MRsWD as an alternative or complementary approach to reduce RF-induced heating of active interventional devices. The automatic MRsWD can reduce heating using direct temperature measurements at the tip of the catheter. Given that temperature measurements are intrinsically slow, for a clinical implementation, a faster feedback parameter would be required such as the RF currents along the catheter or scattered electric fields at the tip.


Assuntos
Catéteres , Ondas de Rádio , Impedância Elétrica , Retroalimentação , Imageamento por Ressonância Magnética , Imagens de Fantasmas
16.
Magn Reson Med ; 83(6): 2284-2292, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31677308

RESUMO

PURPOSE: Patients with deep brain stimulation (DBS) implants benefit highly from MRI, however, access to MRI is restricted for these patients because of safety hazards associated with RF heating of the implant. To date, all MRI studies on RF heating of medical implants have been performed in horizontal closed-bore systems. Vertical MRI scanners have a fundamentally different distribution of electric and magnetic fields and are now available at 1.2T, capable of high-resolution structural and functional MRI. This work presents the first simulation study of RF heating of DBS implants in high-field vertical scanners. METHODS: We performed finite element electromagnetic simulations to calculate specific absorption rate (SAR) at tips of DBS leads during MRI in a commercially available 1.2T vertical coil compared to a 1.5T horizontal scanner. Both isolated leads and fully implanted systems were included. RESULTS: We found 10- to 30-fold reduction in SAR implication at tips of isolated DBS leads, and up to 19-fold SAR reduction at tips of leads in fully implanted systems in vertical coils compared to horizontal birdcage coils. CONCLUSIONS: If confirmed in larger patient cohorts and verified experimentally, this result can open the door to plethora of structural and functional MRI applications to guide, interpret, and advance DBS therapy.


Assuntos
Estimulação Encefálica Profunda , Calefação , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Próteses e Implantes , Ondas de Rádio
17.
Magn Reson Med ; 83(6): 2370-2381, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31763729

RESUMO

PURPOSE: To introduce a prototype active implantable medical device (AIMD) for which the induced radiofrequency currents can be controlled wirelessly. METHODS: The modified transmission line method is used to formulate how the lead-case impedance of an AIMD affects the temperature rise around the electrode. A prototype AIMD is designed with the aim of controlling the unwanted temperature rise around its electrode during an MRI examination by altering the impedance between the lead and the case of the implant. MRI experiments were conducted with this prototype implant, which also has a built-in temperature sensor at its electrode. During the experiment, the implant's lead-case impedance was controlled using Bluetooth communication with a remote computer, and the lead tip temperature was recorded. RESULTS: Ten different lead-case impedance values and their corresponding tip temperature rises were examined during MRI experiments. The experimental results confirmed that the tip temperature rise can be controlled by varying the lead-case impedance wirelessly. CONCLUSION: The feedback from the temperature at the AIMD tip, together with variable lead-case impedance, enables control of the safety profile of the AIMD during an MRI examination.


Assuntos
Próteses e Implantes , Ondas de Rádio , Impedância Elétrica , Eletrodos , Imageamento por Ressonância Magnética
18.
Magn Reson Med ; 84(1): 484-496, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31751499

RESUMO

PURPOSE: The purpose of this study is to safely acquire the first human head images at 10.5T. METHODS: To ensure safety of subjects, we validated the electromagnetic simulation model of our coil. We obtained quantitative agreement between simulated and experimental B1+ and specific absorption rate (SAR). Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects. We conducted all experiments and imaging sessions in a controlled radiofrequency safety lab and the whole-body 10.5T scanner in the Center for Magnetic Resonance Research. RESULTS: Quantitative agreement between the simulated and experimental results was obtained including S-parameters, B1+ maps, and SAR. We calculated peak 10 g average SAR using 4 different realistic human body models for a quadrature excitation and demonstrated that the peak 10 g SAR variation between subjects was less than 30%. We calculated safe power limits based on this set and used those limits to acquire T2 - and T2∗ -weighted images of human subjects at 10.5T. CONCLUSIONS: In this study, we acquired the first in vivo human head images at 10.5T using an 8-channel transmit/receive coil. We implemented and expanded a previously proposed workflow to validate the electromagnetic simulation model of the 8-channel transmit/receive coil. Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Simulação por Computador , Humanos , Imagens de Fantasmas
19.
Neuroimage ; 199: 18-29, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096058

RESUMO

Patients with deep brain stimulation devices highly benefit from postoperative MRI exams, however MRI is not readily accessible to these patients due to safety risks associated with RF heating of the implants. Recently we introduced a patient-adjustable reconfigurable coil technology that substantially reduced local SAR at tips of single isolated DBS leads during MRI at 1.5 T in 9 realistic patient models. This contribution extends our work to higher fields by demonstrating the feasibility of scaling the technology to 3T and assessing its performance in patients with bilateral leads as well as fully implanted systems. We developed patient-derived models of bilateral DBS leads and fully implanted DBS systems from postoperative CT images of 13 patients and performed finite element simulations to calculate SAR amplification at electrode contacts during MRI with a reconfigurable rotating coil at 3T. Compared to a conventional quadrature body coil, the reconfigurable coil system reduced the SAR on average by 83% for unilateral leads and by 59% for bilateral leads. A simple surgical modification in trajectory of implanted leads was demonstrated to increase the SAR reduction efficiency of the rotating coil to >90% in a patient with a fully implanted bilateral DBS system. Thermal analysis of temperature-rise around electrode contacts during typical brain exams showed a 15-fold heating reduction using the rotating coil, generating <1°C temperature rise during ∼4-min imaging with high-SAR sequences where a conventional CP coil generated >10°C temperature rise in the tissue for the same flip angle.


Assuntos
Estimulação Encefálica Profunda/métodos , Eletrodos Implantados , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Estimulação Encefálica Profunda/normas , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/normas , Medicina de Precisão
20.
Magn Reson Med ; 82(3): 1187-1198, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30989710

RESUMO

PURPOSE: In contrast to conventional linear gradients, gradient coil arrays with arbitrary spatial dependency might experience strong mutual coupling. Although conventional gradient power amplifiers with feedback loop might compensate the effect of coupling, required voltages for the compensation are generally unknown and has to be considered beforehand to ensure that amplifier voltage limits are not exceeded. A first-order circuit model is proposed to be used as a feedforward model which enables analytical formulas of required voltages to drive the mutually coupled gradient coil arrays. THEORY AND METHODS: A first-order circuit model including the mutual couplings is provided to analytically calculate the input voltages and minimum achievable rise times for a given set of gradient array currents and amplifier limitations. Previously designed 9-channel Z-gradient coil array and home-built gradient amplifiers (50 V and 20 A) are used in the experiments. Three sets of currents optimized for linear Z-gradient, second-order Z2, and third-order Z3 fields are used in the bench-top experiments. The current weightings for the linear Z-gradient are also used as the readout gradient in the 3T MRI experiments. RESULTS: Current measurements for the example magnetic field profiles with minimum rise times are demonstrated for the simultaneous use of 9-channel gradient coils and amplifiers. MRI experiments verify that a linear Z-gradient field with a desired time waveform can be generated using a mutually coupled array coils. CONCLUSION: Bench-top and MRI experiments demonstrate the feasibility of the proposed circuit model and analytical formulas to drive the mutually coupled gradient coils.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...