Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 624(7991): 289-294, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871614

RESUMO

Inverted perovskite solar cells (PSCs) promise enhanced operating stability compared to their normal-structure counterparts1-3. To improve efficiency further, it is crucial to combine effective light management with low interfacial losses4,5. Here we develop a conformal self-assembled monolayer (SAM) as the hole-selective contact on light-managing textured substrates. Molecular dynamics simulations indicate that cluster formation during phosphonic acid adsorption leads to incomplete SAM coverage. We devise a co-adsorbent strategy that disassembles high-order clusters, thus homogenizing the distribution of phosphonic acid molecules, and thereby minimizing interfacial recombination and improving electronic structures. We report a laboratory-measured power conversion efficiency (PCE) of 25.3% and a certified quasi-steady-state PCE of 24.8% for inverted PSCs, with a photocurrent approaching 95% of the Shockley-Queisser maximum. An encapsulated device having a PCE of 24.6% at room temperature retains 95% of its peak performance when stressed at 65 °C and 50% relative humidity following more than 1,000 h of maximum power point tracking under 1 sun illumination. This represents one of the most stable PSCs subjected to accelerated ageing: achieved with a PCE surpassing 24%. The engineering of phosphonic acid adsorption on textured substrates offers a promising avenue for efficient and stable PSCs. It is also anticipated to benefit other optoelectronic devices that require light management.

2.
Science ; 381(6654): 209-215, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37440655

RESUMO

Perovskite solar cells (PSCs) consisting of interfacial two- and three-dimensional heterostructures that incorporate ammonium ligand intercalation have enabled rapid progress toward the goal of uniting performance with stability. However, as the field continues to seek ever-higher durability, additional tools that avoid progressive ligand intercalation are needed to minimize degradation at high temperatures. We used ammonium ligands that are nonreactive with the bulk of perovskites and investigated a library that varies ligand molecular structure systematically. We found that fluorinated aniliniums offer interfacial passivation and simultaneously minimize reactivity with perovskites. Using this approach, we report a certified quasi-steady-state power-conversion efficiency of 24.09% for inverted-structure PSCs. In an encapsulated device operating at 85°C and 50% relative humidity, we document a 1560-hour T85 at maximum power point under 1-sun illumination.

3.
Sci Adv ; 9(23): eadg0032, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285424

RESUMO

Constructing two-dimensional (2D) perovskite atop of 3D with energy landscape management is still a challenge in perovskite photovoltaics. Here, we report a strategy through designing a series of π-conjugated organic cations to construct stable 2D perovskites and to realize delicate energy level tunability at 2D/3D heterojunctions. As a result, the hole transfer energy barriers can be reduced both at heterojunctions and within 2D structures, and the preferable work function shift reduces charge accumulation at interface. Leveraging these insights and also benefitted from the superior interface contact between conjugated cations and poly(triarylamine) (PTAA) hole transporting layer, a solar cell with power conversion efficiency of 24.6% has been achieved, which is the highest among PTAA-based n-i-p devices to the best of our knowledge. The devices exhibit greatly enhanced stability and reproducibility. This approach is generic to several hole transporting materials, offering opportunities to realize high efficiency without using the unstable Spiro-OMeTAD.

4.
Adv Mater ; 35(26): e2300647, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942854

RESUMO

Perovskite solar cells (PSCs) have delivered a power conversion efficiency (PCE) of more than 25% and incorporating polymers as hole-transporting layers (HTLs) can further enhance the stability of devices toward the goal of commercialization. Among the various polymeric hole-transporting materials, poly(triaryl amine) (PTAA) is one of the promising HTL candidates with good stability; however, the hydrophobicity of PTAA causes problematic interfacial contact with the perovskite, limiting the device performance. Using molecular side-chain engineering, a uniform 2D perovskite interlayer with conjugated ligands, between 3D perovskites and PTAA is successfully constructed. Further, employing conjugated ligands as cohesive elements, perovskite/PTAA interfacial adhesion is significantly improved. As a result, the thin and lateral extended 2D/3D heterostructure enables as-fabricated PTAA-based PSCs to achieve a PCE of 23.7%, improved from the 18% of reference devices. Owing to the increased ion-migration energy barrier and conformal 2D coating, unencapsulated devices with the new ligands exhibit both superior thermal stability under 60 °C heating and moisture stability in ambient conditions.

5.
Nat Commun ; 14(1): 397, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36693860

RESUMO

Electroluminescence efficiencies and stabilities of quasi-two-dimensional halide perovskites are restricted by the formation of multiple-quantum-well structures with broad and uncontrollable phase distributions. Here, we report a ligand design strategy to substantially suppress diffusion-limited phase disproportionation, thereby enabling better phase control. We demonstrate that extending the π-conjugation length and increasing the cross-sectional area of the ligand enables perovskite thin films with dramatically suppressed ion transport, narrowed phase distributions, reduced defect densities, and enhanced radiative recombination efficiencies. Consequently, we achieved efficient and stable deep-red light-emitting diodes with a peak external quantum efficiency of 26.3% (average 22.9% among 70 devices and cross-checked) and a half-life of ~220 and 2.8 h under a constant current density of 0.1 and 12 mA/cm2, respectively. Our devices also exhibit wide wavelength tunability and improved spectral and phase stability compared with existing perovskite light-emitting diodes. These discoveries provide critical insights into the molecular design and crystallization kinetics of low-dimensional perovskite semiconductors for light-emitting devices.

6.
Nature ; 603(7899): 73-78, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038717

RESUMO

All-perovskite tandem solar cells hold the promise of surpassing the efficiency limits of single-junction solar cells1-3; however, until now, the best-performing all-perovskite tandem solar cells have exhibited lower certified efficiency than have single-junction perovskite solar cells4,5. A thick mixed Pb-Sn narrow-bandgap subcell is needed to achieve high photocurrent density in tandem solar cells6, yet this is challenging owing to the short carrier diffusion length within Pb-Sn perovskites. Here we develop ammonium-cation-passivated Pb-Sn perovskites with long diffusion lengths, enabling subcells that have an absorber thickness of approximately 1.2 µm. Molecular dynamics simulations indicate that widely used phenethylammonium cations are only partially adsorbed on the surface defective sites at perovskite crystallization temperatures. The passivator adsorption is predicted to be enhanced using 4-trifluoromethyl-phenylammonium (CF3-PA), which exhibits a stronger perovskite surface-passivator interaction than does phenethylammonium. By adding a small amount of CF3-PA into the precursor solution, we increase the carrier diffusion length within Pb-Sn perovskites twofold, to over 5 µm, and increase the efficiency of Pb-Sn perovskite solar cells to over 22%. We report a certified efficiency of 26.4% in all-perovskite tandem solar cells, which exceeds that of the best-performing single-junction perovskite solar cells. Encapsulated tandem devices retain more than 90% of their initial performance after 600 h of operation at the maximum power point under 1 Sun illumination in ambient conditions.

7.
Adv Mater ; 33(32): e2100791, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34219297

RESUMO

Surface passivation is an effective way to boost the efficiency and stability of perovskite solar cells (PSCs). However, a key challenge faced by most of the passivation strategies is reducing the interface charge recombination without imposing energy barriers to charge extraction. Here, a novel multifunctional semiconducting organic ammonium cationic interface modifier inserted between the light-harvesting perovskite film and the hole-transporting layer is reported. It is shown that the conjugated cations can directly extract holes from perovskite efficiently, and simultaneously reduce interface non-radiative recombination. Together with improved energy level alignment and the stabilized interface in the device, a triple-cation mixed-halide medium-bandgap PSC with an excellent power conversion efficiency of 22.06% (improved from 19.94%) and suppressed ion migration and halide phase segregation, which lead to a long-term operational stability, is demonstrated. This strategy provides a new practical method of interface engineering in PSCs toward improved efficiency and stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...