Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cell Tissue Res ; 392(1): 295-300, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35084571

RESUMO

Real-time quaking-induced conversion (RT-QuIC) is a cell-free abnormal form of prion protein (PrPSc) amplification method using recombinant prion protein from Escherichia coli that can measure prion seeding activity in samples with high sensitivity. The advantages of this method are that it is much more sensitive than Western blotting, which is usually used to detect PrPSc, and that prion seeding activity can be easily quantified by combining it with endpoint dilution of the sample, and that it can be amplified in most species and prion strains. A decade has passed since the development of RT-QuIC, and many studies have been reported that take advantage of its characteristics. In particular, its usefulness in the diagnosis of sporadic CJD has been clarified, and it is recommended to be one of the diagnostic criteria. Future challenges include the establishment of a method to differentiate prion strains and application of RT-QuIC to early diagnosis of prion diseases and determination of treatment efficacy.


Assuntos
Síndrome de Creutzfeldt-Jakob , Encefalopatia Espongiforme Bovina , Doenças Priônicas , Príons , Animais , Bovinos , Proteínas Priônicas , Western Blotting , Proteínas Recombinantes , Doenças Priônicas/diagnóstico
2.
J Biol Chem ; 298(9): 102381, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35973512

RESUMO

Conformational conversion of the cellular prion protein, PrPC, into the amyloidogenic isoform, PrPSc, is a key pathogenic event in prion diseases. However, the conversion mechanism remains to be elucidated. Here, we generated Tg(PrPΔ91-106)-8545/Prnp0/0 mice, which overexpress mouse PrP lacking residues 91-106. We showed that none of the mice became sick after intracerebral inoculation with RML, 22L, and FK-1 prion strains nor accumulated PrPScΔ91-106 in their brains except for a small amount of PrPScΔ91-106 detected in one 22L-inoculated mouse. However, they developed disease around 85 days after inoculation with bovine spongiform encephalopathy (BSE) prions with PrPScΔ91-106 in their brains. These results suggest that residues 91-106 are important for PrPC conversion into PrPSc in infection with RML, 22L, and FK-1 prions but not BSE prions. We then narrowed down the residues 91-106 by transducing various PrP deletional mutants into RML- and 22L-infected cells and identified that PrP mutants lacking residues 97-99 failed to convert into PrPSc in these cells. Our in vitro conversion assay also showed that RML, 22L, and FK-1 prions did not convert PrPΔ97-99 into PrPScΔ97-99, but BSE prions did. We further found that PrP mutants with proline residues at positions 97 to 99 or charged residues at positions 97 and 99 completely or almost completely lost their converting activity into PrPSc in RML- and 22L-infected cells. These results suggest that the structurally flexible and noncharged residues 97-99 could be important for PrPC conversion into PrPSc following infection with RML, 22L, and FK-1 prions but not BSE prions.


Assuntos
Doenças Priônicas , Proteínas Priônicas , Príons , Animais , Camundongos , Doenças Priônicas/genética , Proteínas Priônicas/química , Proteínas Priônicas/genética , Príons/patogenicidade , Prolina , Isoformas de Proteínas/genética , Translocação Genética
3.
Sci Rep ; 12(1): 7923, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562591

RESUMO

Each prion strain has its own characteristics and the efficacy of anti-prion drugs varies. Screening of prion disease therapeutics is typically evaluated by measuring amounts of protease-resistant prion protein (PrP-res). However, it remains unclear whether such measurements correlate with seeding activity, which is evaluated by real-time quaking-induced conversion (RT-QuIC). In this study, the effects of anti-prion compounds pentosan polysulfate (PPS), Congo red, and alprenolol were measured in N2a58 cells infected with Fukuoka-1 (FK1) or 22L strain. The compounds abolished PrP-res and seeding activity, except for N2a58/FK1 treated with PPS. Interestingly, the seeding activity of N2a58/FK1, which was reduced in the presence of PPS, was not lost and remained at low levels. However, upon removal of PPS, both were gradually restored to their original levels. These results indicate that low-level persistent prion infection keeping measurable seeding activity is induced by PPS in a strain-dependent manner. Furthermore, for protein misfolding cyclic amplification (PMCA), the anti-prion effect of PPS decreased in FK1 compared to 22L, suggesting that the differences occur at the level of the direct conversion. Our findings demonstrate that the advantages of RT-QuIC and PMCA can be exploited for more accurate assessment of therapeutic drug screening, reflecting strain differences.


Assuntos
Doenças Priônicas , Príons , Animais , Camundongos , Poliéster Sulfúrico de Pentosana/farmacologia , Poliéster Sulfúrico de Pentosana/uso terapêutico , Proteínas PrPSc/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Príons/metabolismo
4.
Biochem Biophys Res Commun ; 613: 67-72, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35537287

RESUMO

Prion diseases are transmissible and progressive neurodegenerative disorders characterized by abnormal prion protein (PrPSc) accumulation in the central nervous system. Generation of synthetic PrPSc in a cell-free conversion system and examination of its transmissibility to animals would facilitate testing of the protein-only hypothesis and the understanding of the molecular basis of sporadic prion diseases. In this study, we used recombinant prion protein from a baculovirus-insect cell expression system (Bac-rPrP) and insect cell-derived cofactors to determine whether Bac-rPrPSc is spontaneously produced in intermittent ultrasonic reactions. No spontaneous generation of Bac-rPrPSc was observed at 37 °C, but when the reaction temperature was increased to 45 °C, Bac-rPrPSc was generated in all trials. Some Bac-rPrPSc variants were transmissible to mice, but when the reaction was repeated for 40 rounds, the transmissibility was lost. Notably, a variety of Bac-rPrPSc variants, including non-transmissible ones, differing in resistance to proteinase K and cofactor dependence during amplification, was generated under the same experimental conditions, including the same sonication settings and cofactors. However, their characteristics also disappeared after 40 reaction rounds and the variety converged onto a single variant. These results indicate that various Bac-rPrPSc variants with different transmissibility to mice and structural properties are generated, which compete with each other and gradually converge onto a variant with a slightly faster amplification rate.


Assuntos
Doenças Priônicas , Príons , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Insetos/metabolismo , Camundongos , Proteínas Priônicas/genética , Príons/metabolismo , Proteínas Recombinantes/metabolismo
5.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769172

RESUMO

Prion diseases are a group of fatal neurodegenerative disorders caused by accumulation of proteinaceous infectious particles, or prions, which mainly consist of the abnormally folded, amyloidogenic prion protein, designated PrPSc. PrPSc is produced through conformational conversion of the cellular isoform of prion protein, PrPC, in the brain. To date, no effective therapies for prion diseases have been developed. In this study, we incidentally noticed that mouse neuroblastoma N2a cells persistently infected with 22L scrapie prions, termed N2aC24L1-3 cells, reduced PrPSc levels when cultured in advanced Dulbecco's modified eagle medium (DMEM) but not in classic DMEM. PrPC levels remained unchanged in prion-uninfected parent N2aC24 cells cultured in advanced DMEM. These results suggest that advanced DMEM may contain an anti-prion compound(s). We then successfully identified ethanolamine in advanced DMEM has an anti-prion activity. Ethanolamine reduced PrPSc levels in N2aC24L1-3 cells, but not PrPC levels in N2aC24 cells. Also, oral administration of ethanolamine through drinking water delayed prion disease in mice intracerebrally inoculated with RML scrapie prions. These results suggest that ethanolamine could be a new anti-prion compound.


Assuntos
Encéfalo/metabolismo , Etanolamina/farmacologia , Proteínas PrPSc , Doenças Priônicas , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos ICR , Proteínas PrPSc/antagonistas & inibidores , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/genética , Doenças Priônicas/metabolismo
6.
Neurosci Res ; 171: 34-40, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33476681

RESUMO

The defining characteristic of prion diseases is conversion of a cellular prion protein (PrPC) to an abnormal prion protein (PrPSc). The exogenous attachment of PrPSc to the surface of a target cell is critical for infection. However, the initial interaction of PrPSc with the cell surface is poorly characterized. In the current study, we specifically focused on the association of PrPSc with cells during the early phase of infection, using an acute infection model. First, we treated mouse neuroblastoma N2a-58 cells with prion strain 22 L-infected brain homogenates and revealed that PrPSc was associated with membrane fractions within three hours, a short exposure time. These results were also observed in PrPC-deficient hippocampus cell lines. We also demonstrate here that PrPSc from 22 L-infected brain homogenates was associated with lipid rafts during the early phase of infection. Furthermore, we revealed that DS500, a glycosaminoglycan mimetic, inhibited both the attachment of PrPSc to membrane fractions and subsequent prion transmission, suggesting that the early association of prions with cell surface is important for prion infection.


Assuntos
Doenças Priônicas , Príons , Animais , Membrana Celular , Sulfato de Dextrana , Camundongos , Proteínas PrPSc
7.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019549

RESUMO

Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform, PrPSc, is a key pathogenic event in prion diseases. However, the exact conversion mechanism remains largely unknown. Transgenic mice expressing PrP with a deletion of the central residues 91-106 were generated in the absence of endogenous PrPC, designated Tg(PrP∆91-106)/Prnp0/0 mice and intracerebrally inoculated with various prions. Tg(PrP∆91-106)/Prnp0/0 mice were resistant to RML, 22L and FK-1 prions, neither producing PrPSc∆91-106 or prions in the brain nor developing disease after inoculation. However, they remained marginally susceptible to bovine spongiform encephalopathy (BSE) prions, developing disease after elongated incubation times and accumulating PrPSc∆91-106 and prions in the brain after inoculation with BSE prions. Recombinant PrP∆91-104 converted into PrPSc∆91-104 after incubation with BSE-PrPSc-prions but not with RML- and 22L-PrPSc-prions, in a protein misfolding cyclic amplification assay. However, digitonin and heparin stimulated the conversion of PrP∆91-104 into PrPSc∆91-104 even after incubation with RML- and 22L-PrPSc-prions. These results suggest that residues 91-106 or 91-104 of PrPC are crucially involved in prion pathogenesis in a strain-dependent manner and may play a similar role to digitonin and heparin in the conversion of PrPC into PrPSc.


Assuntos
Encefalopatia Espongiforme Bovina/genética , Proteínas PrPC/genética , Proteínas PrPSc/genética , Deficiências na Proteostase/genética , Scrapie/genética , Deleção de Sequência , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Clonagem Molecular , Suscetibilidade a Doenças , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/patologia , Expressão Gênica , Injeções Intraventriculares , Camundongos , Camundongos Transgênicos , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/administração & dosagem , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Scrapie/metabolismo , Scrapie/patologia , Especificidade da Espécie
8.
Nucl Med Biol ; 90-91: 41-48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32979726

RESUMO

INTRODUCTION: Prion diseases are fatal neurodegenerative disorders caused by the deposition of abnormal prion protein aggregates (PrPSc) in the central nervous system. This study aimed to evaluate the use of iodinated pyridyl benzofuran (IPBF) derivatives as single-photon emission computed tomography (SPECT) probes for the detection of cerebral PrPSc deposits. METHODS: In vitro binding assays of IPBF derivatives were carried out in the recombinant mouse prion protein (rMoPrP) and brain sections of mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice. SPECT imaging of 5-(5-[123I]iodobenzofuran-2-yl)-N-methylpyridin-2-amine ([123I]IPBF-NHMe) was performed on mBSE-infected and mock-infected mice. RESULTS: Fluorescence microscopy results showed that fluorescence signals of IPBF derivatives corresponded to the thioflavin-T positive amyloid deposits of PrPSc in the brain sections of mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice. Among the IPBF derivatives, 5-(5-iodobenzofuran-2-yl)-N-methylpyridin-2-amine (IPBF-NHMe) exhibited the highest binding affinity to the recombinant mouse prion protein (rMoPrP) aggregates with a Ki of 14.3 nM. SPECT/computed tomography (CT) imaging and ex vivo autoradiography demonstrated that the [123I]IPBF-NHMe distribution in brain tissues of mBSE-infected mice co-localized with PrPSc deposits. CONCLUSION: [123I]IPBF-NHMe appears to be a prospective SPECT tracer for monitoring prion deposits in living brain tissues.


Assuntos
Benzofuranos/química , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas Priônicas/metabolismo , Piridinas/química , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Estudos de Viabilidade , Camundongos , Microscopia de Fluorescência
9.
Sci Rep ; 10(1): 15900, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985542

RESUMO

Prion protein (PrPC) knockout mice, named as the "Ngsk" strain (Ngsk Prnp0/0 mice), show late-onset cerebellar Purkinje cell (PC) degeneration because of ectopic overexpression of PrPC-like protein (PrPLP/Dpl). Our previous study indicated that the mutant mice also exhibited alterations in cerebellum-dependent delay eyeblink conditioning, even at a young age (16 weeks of age) when neurological changes had not occurred. Thus, this electrophysiological study was designed to examine the synaptic function of the cerebellar cortex in juvenile Ngsk Prnp0/0 mice. We showed that Ngsk Prnp0/0 mice exhibited normal paired-pulse facilitation but impaired long-term depression of excitatory synaptic transmission at synapses between parallel fibres and PCs. GABAA-mediated inhibitory postsynaptic currents recorded from PCs were also weakened in Ngsk Prnp0/0 mice. Furthermore, we confirmed that Ngsk Prnp0/0 mice (7-8-week-old) exhibited abnormalities in delay eyeblink conditioning. Our findings suggest that these alterations in both excitatory and inhibitory synaptic transmission to PCs caused deficits in delay eyeblink conditioning of Ngsk Prnp0/0 mice. Therefore, the Ngsk Prnp0/0 mouse model can contribute to study underlying mechanisms for impairments of synaptic transmission and neural plasticity, and cognitive deficits in the central nervous system.


Assuntos
Cerebelo/fisiopatologia , Depressão Sináptica de Longo Prazo/fisiologia , Proteínas PrPC/genética , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Cerebelo/metabolismo , Condicionamento Palpebral/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Proteínas PrPC/metabolismo
10.
Neurotherapeutics ; 17(4): 1850-1860, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32483654

RESUMO

Human prion diseases are etiologically categorized into three forms: sporadic, genetic, and infectious. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common type of human prion disease that manifests as subacute progressive dementia. No effective therapy for sCJD is currently available. Potential therapeutic compounds are frequently tested in rodents infected with mouse-adapted prions that differ from human prions. However, therapeutic effect varies depending on the prion strain, which is one of the reasons why candidate compounds have shown little effect in sCJD patients. We previously reported that intraperitoneal administration of FK506 was able to prolong the survival of mice infected with a mouse-adapted prion by suppressing the accumulation of abnormal prion protein (PrP) and inhibiting the activation of microglia. In this study, we tested oral administration of FK506 in knock-in mice expressing chimeric human prion protein (KiChM) that were infected with sCJD to determine if this compound is also effective against a clinically relevant human prion, i.e., one that has not been adapted to mice. Treatment with FK506, started either just before or just after disease onset, suppressed typical sCJD pathology (gliosis) and slightly but significantly prolonged the survival of sCJD-inoculated mice. It would be worthwhile to conduct a clinical trial using FK506, which has been safety-approved and is widely used as a mild immunosuppressant.


Assuntos
Síndrome de Creutzfeldt-Jakob/tratamento farmacológico , Síndrome de Creutzfeldt-Jakob/mortalidade , Progressão da Doença , Imunossupressores/administração & dosagem , Proteínas Priônicas , Tacrolimo/administração & dosagem , Idoso , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/genética , Feminino , Humanos , Camundongos , Proteínas Priônicas/genética , Taxa de Sobrevida/tendências
11.
Biochem Biophys Res Commun ; 526(4): 1049-1053, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32307081

RESUMO

Real-time quaking-induced conversion (RT-QUIC) assays using Escherichia coli-derived purified recombinant prion protein (rPrP) enable us to amplify a trace amount of the abnormal form of PrP (PrPSc) from specimens. This technique can be useful for the early diagnosis of both human and animal prion diseases and the assessment of prion contamination. In the present study, we demonstrated that there are strain-specific differences in the RT-QUIC reactions between an atypical form of bovine spongiform encephalopathy (BSE), l-BSE, and classical BSE (C-BSE). Whereas mouse rPrP (rMoPrP) was efficiently converted to amyloid fibrils in the presence of PrPSc seed derived from either l-BSE or C-BSE, hamster rPrP (rHaPrP) was converted only in l-BSE, not C-BSE. These characteristics were preserved in the second round reaction, but gradually weakened in the subsequent rounds and were completely lost by the fifth round, most likely due to the selective growth advantage of nonspecific rPrP amyloid fibrils in the RT-QUIC. Our findings further enhance the discrimination of prion strains using RT-QUIC, and further our understanding of the molecular basis of prion strains.


Assuntos
Bioquímica/métodos , Sistemas Computacionais , Encefalopatia Espongiforme Bovina/diagnóstico , Proteínas Priônicas/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Cricetinae , Diagnóstico Diferencial , Camundongos , Especificidade da Espécie
12.
Biochem Biophys Res Commun ; 525(2): 447-454, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32107004

RESUMO

Cellular prion protein (PrP) is a membrane protein that is highly conserved among mammals and mainly expressed on the cell surface of neurons. Despite its reported interactions with various membrane proteins, no functional studies have so far been carried out on it, and its physiological functions remain unclear. Neuronal cell death has been observed in a PrP-knockout mouse model expressing Doppel protein, suggesting that PrP might be involved in Ca2+ signaling. In this study, we evaluated the binding of PrP to metabotropic glutamate receptor 1 (mGluR1) and found that wild-type PrP (PrP-wt) and mGluR1 co-immunoprecipitated in dual-transfected Neuro-2a (N2a) cells. Fluorescence resonance energy transfer analysis revealed an energy transfer between mGluR1-Cerulean and PrP-Venus. In order to determine whether PrP can modulate mGluR1 signaling, we performed Ca2+ imaging analyses following repetitive exposure to an mGluR1 agonist. Agonist stimulation induced synchronized Ca2+ oscillations in cells coexpressing PrP-wt and mGluR1. In contrast, N2a cells expressing PrP-ΔN failed to show ligand-dependent regulation of mGluR1-Ca2+ signaling, indicating that PrP can bind to mGluR1 and modulate its function to prevent irregular Ca2+ signaling and that its N-terminal region functions as a molecular switch during Ca2+ signaling.


Assuntos
Sinalização do Cálcio , Proteínas Priônicas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Camundongos , Neurônios/metabolismo , Mapas de Interação de Proteínas
13.
Yakugaku Zasshi ; 139(7): 989-992, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31257257

RESUMO

The molecular basis underlying the conversion of normal prion protein (PrPC) into abnormal prion protein (PrPSc) has not been fully elucidated. The protein-misfolding cyclic amplification (PMCA) technique, which can amplify PrPSc in vitro with the use of intermittent sonication, mimics the process of in vivo PrPSc replication. Accumulating evidence suggests that co-factors other than PrP may play a crucial role in the faithful replication of PrPSc. In conventional PMCA, brain homogenates (BHs) from normal animals are used as the PrPC substrate. Since BHs contain many impurities, it is difficult to identify the co-factors using conventional PMCA. Thus, we developed a modified PMCA system using baculovirus and insect cell-derived recombinant PrP as a substrate (insect cell PMCA; iPMCA). We demonstrated that nucleic acids and glycosaminoglycans (GAGs) such as heparan sulfate (HS) or its analogue heparin (HP) are critical for PrPSc amplification in iPMCA. Of note, the addition of HS or HP restored the conversion efficiency in iPMCA under nucleic acid-depleted conditions. Moreover, the iPMCA products were infectious and preserved the strain properties of the input seed PrPSc. These data suggest that not only nucleic acids but also some GAGs play an important role in facilitating faithful replication of prions, at least in vitro.


Assuntos
Baculoviridae/genética , Insetos/genética , Proteínas Priônicas/química , Animais , Sistema Livre de Células , Glicosaminoglicanos , Heparina , Heparitina Sulfato , Técnicas In Vitro , Ácidos Nucleicos , Proteínas Recombinantes/química
14.
J Vet Med Sci ; 81(6): 846-850, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-30982806

RESUMO

Atypical bovine spongiform encephalopathy (BSE), first identified in 2004, poses a threat due to the potential to spread the disease to cattle and other animals, including humans. Here, we estimated prion titers in various tissues of cattle infected with atypical BSE using a real-time quaking-induced conversion assay that detects amyloid seeding activity of a disease-specific prion protein, PrPSc, a major component of prions. PrPSc was detected both in and outside of nerve tissues, and some of the peripheral nerve tissues contained relatively high prion titers. Low titers of prions were also observed in masseter, jejunum, and adrenal glands. Quantitative data on prion infectivity in tissues of atypical BSE-affected cattle is useful to assess the risk of atypical BSE.


Assuntos
Encefalopatia Espongiforme Bovina , Immunoblotting/veterinária , Proteínas Priônicas/isolamento & purificação , Animais , Bovinos , Immunoblotting/métodos , Nervos Periféricos , Proteínas Priônicas/metabolismo , Príons/isolamento & purificação , Príons/patogenicidade , Distribuição Tecidual
15.
ACS Infect Dis ; 5(12): 2003-2013, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30875466

RESUMO

Prion diseases are fatal neurodegenerative disorders associated with the deposition of abnormal prion protein aggregates (PrPSc) in the brain tissue. Here, we report the development of 125I-labeled iodobenzofuran (IBF) derivatives as single photon emission computed tomography (SPECT) imaging probes to detect cerebral PrPSc deposits. We synthesized and radioiodinated several 5-IBF and 6-IBF derivatives. The IBF derivatives were evaluated as prion imaging probes using recombinant mouse prion protein (rMoPrP) aggregates and brain sections of mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice. Although all the IBF derivatives were strongly adsorbed on the rMoPrP aggregates, [125I]5-IBF-NHMe displayed the highest adsorption rate and potent binding affinity with an equilibrium dissociation constant (Kd) of 12.3 nM. Fluorescence imaging using IBF-NHMe showed clear signals of the PrPSc-positive amyloid deposits in the mBSE-infected mouse brains. Biodistribution studies in normal mice demonstrated slow uptake and clearance from the brain of 125I-IBF derivatives. Among the derivatives, [125I]6-IBF-NH2 showed the highest peak brain uptake [2.59% injected dose (ID)/g at 10 min] and good clearance (0.51% ID/g at 180 min). Although the brain distribution of IBF derivatives should still be optimized for in vivo imaging, these compounds showed prospective binding properties to PrPSc. Further chemical modification of these IBF derivatives may contribute to the discovery of clinically applicable prion imaging probes.


Assuntos
Benzofuranos/síntese química , Encéfalo/metabolismo , Radioisótopos do Iodo/química , Proteínas PrPC/metabolismo , Doenças Priônicas/diagnóstico por imagem , Animais , Benzofuranos/administração & dosagem , Benzofuranos/química , Benzofuranos/farmacocinética , Encéfalo/diagnóstico por imagem , Bovinos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Estrutura Molecular , Doenças Priônicas/metabolismo , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
16.
Infect Genet Evol ; 69: 246-254, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30763773

RESUMO

Rotavirus A (RVA) causes acute diarrhoea in children and less frequently in adults. However, the knowledge about the genotype distribution of RVA strains circulating in adults is limited particularly in developing countries. This study aimed to characterise the RVA strains detected from adult patients with diarrhoea in Nepal. A total of 47 RVA positive stool samples from adult patients with diarrhoea in Kathmandu, Nepal during 2007-2008 were examined for the G and P genotypes by sequencing. Nearly half (49%) of the samples were genotyped as G9P[8] (n = 23), G1P[8], G2P[4] (n = 5 each), G12P[8] (n = 4), G12P[6] (n = 3), G1P[6] (n = 2), G3P[8] and G9P[6] (n = 1 each). Interestingly, two G11P[25] and one G9P[19] strains detected were further subjected to Illumina MiSeq next generation sequencing to determine their whole genome sequences. The genotype constellations of RVA/Human-wt/NPL/TK2615/2008/G11P[25] and RVA/Human-wt/NPL/TK2620/2008/G11P[25] were I12-R1-C1-M1-A1-N1-T1-E1-H1, whereas that of RVA/Human-wt/NPL/TK1797/2007/G9P[19] was I5-R1-C1-M1-A8-N1-T1-E1-H1. The 11 genes of TK2615 and TK2620 were virtually identical, and they were either porcine-like or unique except the VP2 and NSP1 genes which were of human RVA origin. The two G11P[25] strains were also very similar to KTM368, another G11P[25] isolated from a child in Nepal in 2004. On the other hand, no gene of TK1797 was likely to be of human RVA origin. The observation that porcine-like RVAs were detected from adult patients justifies further studies to explore the role of adults in the interspecies transmission of animal RVA to humans.


Assuntos
Diarreia/epidemiologia , Diarreia/virologia , Genoma Viral , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/genética , Antígenos Virais/genética , Antígenos Virais/imunologia , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Nepal/epidemiologia , Filogenia
17.
Brain ; 142(4): 1035-1050, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753318

RESUMO

Infectious prions comprising abnormal prion protein, which is produced by structural conversion of normal prion protein, are responsible for transmissible spongiform encephalopathies including Creutzfeldt-Jakob disease in humans. Prions are infectious agents that do not possess a genome and the pathogenic protein was not thought to evoke any immune response. Although we previously reported that interferon regulatory factor 3 (IRF3) was likely to be involved in the pathogenesis of prion diseases, suggesting the protective role of host innate immune responses mediated by IRF3 signalling, this remained to be clarified. Here, we investigated the reciprocal interactions of type I interferon evoked by IRF3 activation and prion infection and found that infecting prions cause the suppression of endogenous interferon expression. Conversely, treatment with recombinant interferons in an ex vivo model was able to inhibit prion infection. In addition, cells and mice deficient in type I interferon receptor (subunit interferon alpha/beta receptor 1), exhibited higher susceptibility to 22L-prion infection. Moreover, in in vivo and ex vivo prion-infected models, treatment with RO8191, a selective type I interferon receptor agonist, inhibited prion invasion and prolonged the survival period of infected mice. Taken together, these data indicated that the interferon signalling interferes with prion propagation and some interferon-stimulated genes might play protective roles in the brain. These findings may allow for the development of new strategies to combat fatal diseases.


Assuntos
Interferon Tipo I/fisiologia , Doenças Priônicas/patologia , Príons/metabolismo , Animais , Encéfalo/patologia , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Doenças Priônicas/imunologia , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Príons/patogenicidade , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais
18.
Mol Neurobiol ; 56(1): 367-377, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29704200

RESUMO

Prion diseases are transmissible neurodegenerative disorders of humans and animals, which are characterized by the aggregation of abnormal prion protein (PrPSc) in the central nervous system. Although several small compounds that bind to normal PrP (PrPC) have been shown to inhibit structural conversion of the protein, an effective therapy for human prion disease remains to be established. In this study, we screened 1200 existing drugs approved by the US Food and Drug Administration (FDA) for anti-prion activity using surface plasmon resonance imaging (SPRi). Of these drugs, 31 showed strong binding activity to recombinant human PrP, and three of these reduced the accumulation of PrPSc in prion-infected cells. One of the active compounds, alprenolol hydrochloride, which is used clinically as a ß-adrenergic blocker for hypertension, also reduced the accumulation of PrPSc in the brains of prion-infected mice at the middle stage of the disease when the drug was administered orally with their daily water from the day after infection. Docking simulation analysis suggested that alprenolol hydrochloride fitted into the hotspot within mouse PrPC, which is known as the most fragile structure within the protein. These findings provide evidence that SPRi is useful in identifying effective drug candidates for neurodegenerative diseases caused by abnormal protein aggregation, such as prion diseases.


Assuntos
Alprenolol/farmacologia , Imageamento Tridimensional , Príons/antagonistas & inibidores , Alprenolol/química , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Espectroscopia de Ressonância Magnética , Camundongos , Simulação de Acoplamento Molecular , Oxprenolol/química , Oxprenolol/farmacologia , Proteínas PrPSc/metabolismo , Príons/química , Príons/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Ressonância de Plasmônio de Superfície , Análise de Sobrevida
19.
Clin Chim Acta ; 484: 26-31, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29775619

RESUMO

BACKGROUND: Immune complexes (ICs) may clearly reflect immunological abnormalities caused by disease, especially for autoimmune diseases. Although ICs have been detected in cerebrospinal fluid (CSF) from patients with CNS autoimmune diseases, identities of antigens in such ICs have not been comprehensively determined. METHODS: We used immune complexome analysis, in which nano-liquid chromatography-tandem mass spectrometry is employed to comprehensively identify antigens incorporated into ICs in biological fluids, to characterize ICs in CSF samples from patients with CNS autoimmune diseases, and to find disease-specific IC antigen to a certain CNS autoimmune disease. Also, we compared the IC antigens we identified with the reported CSF proteome or with the published plasma proteome to examine if the method is distinguished from the conventional CSF proteome analysis. RESULTS: We identified 176 antigens in 78 CSF samples. We then assessed the overlaps among these antigens, the CSF proteome, and the plasma proteome; 140 of the 176 antigens were found to be exclusively detected by our method. Notably, IC-associated suprabasin in CSF was 100% specific to neuropsychiatric systemic lupus erythematosus (NPSLE). CONCLUSIONS: This report is the first to comprehensively identify the antigens incorporated into ICs in CSF. There was limited overlap between the antigens we identified and the CSF proteome or the plasma proteome; therefore, our method can be distinguished from the conventional CSF proteome analysis. Although the sensitivity of disease-specific IC-antigens detected in immune complexome analysis screening, the sensitivity may be improved by developing an ELISA method specifically for detecting the ICs. Immune complexome analysis of CSF may be a new and promising path to biomarker discovery for diagnosis and study for CNS autoimmune diseases.


Assuntos
Complexo Antígeno-Anticorpo/análise , Doenças Autoimunes do Sistema Nervoso/imunologia , Líquido Cefalorraquidiano/química , Proteoma/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Complexo Antígeno-Anticorpo/imunologia , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Biomarcadores/análise , Líquido Cefalorraquidiano/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteoma/imunologia , Adulto Jovem
20.
Mol Neurobiol ; 55(5): 3916-3930, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28550528

RESUMO

The prion-like seeding of misfolded α-synuclein (αSyn) involved in the pathogenesis of Lewy body diseases (LBD) remains poorly understood at the molecular level. Using the real-time quaking-induced conversion (RT-QUIC) seeding assay, we investigated whether brain tissues from cases of dementia with Lewy bodies (DLB), which contain serine 129 (Ser129)-phosphorylated insoluble aggregates of αSyn, can convert Escherichia coli-derived recombinant αSyn (r-αSyn) to fibrils. Diffuse neocortical DLB yielded 50% seeding dose (SD50) values of 107~1010/g brain. Limbic DLB was estimated to have an SD50 value of ~105/g brain. Furthermore, RT-QUIC assay discriminated DLB from other neurological and neurodegenerative disorders. Unexpectedly, the prion-like seeding was reconstructed in reactions seeded with oligomer-like species, but not with insoluble aggregates of r-αSyn, regardless of Ser129 phosphorylation status. Our findings suggest that RT-QUIC using r-αSyn can be applied to detect seeding activity in LBD, and the culprit that causes prion-like seeding may be oligomeric forms of αSyn.


Assuntos
Bioensaio/métodos , Encéfalo/metabolismo , Encéfalo/patologia , Demência/metabolismo , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Príons/metabolismo , Dobramento de Proteína , alfa-Sinucleína/metabolismo , Humanos , Fosforilação , Fosfosserina/metabolismo , Agregados Proteicos , Proteínas Recombinantes/metabolismo , Solubilidade , alfa-Sinucleína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...