Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746371

RESUMO

Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.

4.
Sci Data ; 8(1): 219, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400655

RESUMO

In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/ . The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Medula Espinal/diagnóstico por imagem , Medula Espinal/ultraestrutura , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Reprodutibilidade dos Testes
5.
Nat Protoc ; 16(10): 4611-4632, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34400839

RESUMO

Quantitative spinal cord (SC) magnetic resonance imaging (MRI) presents many challenges, including a lack of standardized imaging protocols. Here we present a prospectively harmonized quantitative MRI protocol, which we refer to as the spine generic protocol, for users of 3T MRI systems from the three main manufacturers: GE, Philips and Siemens. The protocol provides guidance for assessing SC macrostructural and microstructural integrity: T1-weighted and T2-weighted imaging for SC cross-sectional area computation, multi-echo gradient echo for gray matter cross-sectional area, and magnetization transfer and diffusion weighted imaging for assessing white matter microstructure. In a companion paper from the same authors, the spine generic protocol was used to acquire data across 42 centers in 260 healthy subjects. The key details of the spine generic protocol are also available in an open-access document that can be found at https://github.com/spine-generic/protocols . The protocol will serve as a starting point for researchers and clinicians implementing new SC imaging initiatives so that, in the future, inclusion of the SC in neuroimaging protocols will be more common. The protocol could be implemented by any trained MR technician or by a researcher/clinician familiar with MRI acquisition.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Medula Espinal , Adulto , Humanos , Processamento de Imagem Assistida por Computador , Masculino
6.
J Med Radiat Sci ; 68(1): 4-12, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32931647

RESUMO

INTRODUCTION: High-resolution magnetic resonance imaging (MRI) of the cervical spinal cord is important to provide accurate diagnosis and pathological assessment of injuries. MEDIC (Multiple Echo Data Image Combination) sequences have been used in clinical MRI; however, a comparison of the performance of 2D and 3D MEDIC for cervical spinal cord imaging has not been reported. The aim of this study is to compare axial 2D and 3D MEDIC for the visualisation of the grey matter (GM) and white matter (WM) of the human cervical spinal cord. METHODS: Eight healthy participants were scanned using Siemens Prismafit 3T MRI. T2*-weighted gradient spoiled 2D and 3D MEDIC sequences were acquired at 0.4 × 0.4 × 3.0 and 0.3 × 0.3 × 3.0 mm resolutions, with the acquisition times of 6 and 7 min, respectively. Quantitative analyses of the images were made based on the image signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and non-uniformity (NU). Two independent radiologists (CS and FN), each provided Likert scoring assessments of anatomical visibility of the GM and WM structures and image clarity for all samples. RESULTS: Quantitative evaluation showed that 3D MEDIC provided higher SNR, higher CNR and lower NU than 2D MEDIC. However, 2D MEDIC provided better anatomical visibility for the GM, WM and CSF, and higher image clarity (lower artefacts) compared to 3D MEDIC. CONCLUSIONS: 2D MEDIC provides better information for depicting the internal structures of the cervical spinal cord compared to 3D MEDIC.


Assuntos
Medula Cervical/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Artefatos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Neuroimage ; 203: 116206, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31539591

RESUMO

Participant movement can deleteriously affect MR image quality. Further, for the visualization and segmentation of small anatomical structures, there is a need to improve image quality, specifically signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), by acquiring multiple anatomical scans consecutively. We aimed to ameliorate movement artefacts and increase SNR in a high-resolution turbo spin-echo (TSE) sequence acquired thrice using non-linear realignment in order to improve segmentation consistency of the hippocampus subfields. We assessed the method in 29 young healthy participants, 11 Motor Neuron Disease patients, and 11 age matched controls at 7T, and 24 healthy adolescents at 3T. Results show improved image segmentation of the hippocampus subfields when comparing template-based segmentations with individual segmentations with Dice overlaps N = 75; ps < 0.001 (Friedman's test) and higher sharpness ps < 0.001 in non-linearly realigned scans as compared to linearly, and arithmetically averaged scans.


Assuntos
Hipocampo/diagnóstico por imagem , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Idoso , Artefatos , Hipocampo/anatomia & histologia , Hipocampo/patologia , Humanos , Pessoa de Meia-Idade , Doença dos Neurônios Motores/diagnóstico por imagem , Doença dos Neurônios Motores/patologia , Reprodutibilidade dos Testes , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...