Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966168

RESUMO

Core genome multilocus sequence typing (cgMLST) has gained in popularity for bacterial typing since whole-genome sequencing (WGS) has become affordable. We introduce here pyMLST, a new complete, stand-alone, free and open source pipeline for cgMLST analysis. pyMLST can create or import a core genome database. For each gene, the first allele is aligned against the bacterial genome of interest using BLAT. Incomplete genes are aligned using MAFT. All data are stored in a SQLite database. pyMLST accepts assembly genomes or raw data (with the option pyMLST-KMA) as input. To evaluate our new tool, we selected three genome collections of major bacterial pathogens (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) and compared them with pyMLST, pyMLST-KMA, ChewBBACA, SeqSphere and the variant calling approach. We compared the sensitivity, precision and false-positive rate for each method with those of the variant calling approach. Minimal spanning trees were generated with each type of software to evaluate their interest in the context of a bacterial outbreak. We found that pyMLST-KMA is a convenient screening method to avoid assembling large bacterial collections. Our data showed that pyMLST (free, open source, available in Galaxy and pipeline ready) performed similarly to the commercial SeqSphere and performed better than ChewBBACA and pyMLST-KMA.


Assuntos
Benchmarking , Genoma Bacteriano , Tipagem de Sequências Multilocus/métodos , Epidemiologia Molecular/métodos , Software
2.
PLoS One ; 18(10): e0289829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883425

RESUMO

The animal reservoir of Enterobacterales producing Extended-Spectrum-ß-Lactamases (ESBL) and plasmid-borne cephalosporinases (pAmpC) is a global concern. Using genome data, we analyzed a population of Escherichia coli and Salmonella species resistant to third-generation cephalosporins (3GC-R) recovered from healthy food animals (HA) and diseased food animals (DA) across Europe. Among the isolates collected from HA (n = 4,498) and DA (n = 833) in up to twelve European countries, 62 (1.4%) and 45 (5.4%) were 3GC-R, respectively. The genomes of these 3GC-R 107 isolates were sequenced to identify blaESBL and blaAmpC, sequence types (STs), virulence-associated genes, and Salmonella serovars. We also assessed their population structure using core genome multilocus sequence typing. The 78 3GC-R Escherichia coli originated from poultry (n = 27), swine (n = 26), and cattle (n = 25). Almost all (n = 77; 98.7%) harbored at least one blaESBL or blaAmpC, with blaCTX-M-1 predominating. We identified 51 STs, with ST10 and ST101 being the most frequent. The population of 3GC-R E. coli was polyclonal. The 29 3GC-R Salmonella spp. were mostly retrieved from healthy broiler (96.5%). blaCMY-2 dominated in this population. We found two clusters of CMY-2-producing Salmonella spp. in Germany: one with 15 isolates of S. Heidelberg isolates and another with six S. Minnesota, all of them with blaCMY-2. Our results confirm the low prevalence of 3GC-R E. coli and Salmonella spp. in HA and DA. blaCTX-M-1 was dominating in a highly diverse population of E. coli. 3GC-R E.coli isolated from HA and DA were genetically unrelated, with high clonal diversity suggesting multiple origins of contamination. This contrasted with the clonal population of 3GC-R Salmonella spp. in which blaCMY-2 dominated through two dominant serovars in this collection.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Bovinos , Suínos , Escherichia coli/genética , Antibacterianos , Cefalosporinas/farmacologia , beta-Lactamases/genética , Galinhas , Europa (Continente) , Salmonella/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária
3.
Arthritis Res Ther ; 25(1): 95, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280714

RESUMO

BACKGROUND: Intestinal inflammation, dysbiosis, intestinal permeability (IP), and bacterial translocation (BT) have been identified in patients with spondyloarthritis but the time at which they appear and their contribution to the pathogenesis of the disease is still a matter of debate. OBJECTIVES: To study the time-course of intestinal inflammation (I-Inf), IP, microbiota modification BT in a rat model of reactive arthritis, the adjuvant-induced arthritis model (AIA). METHODS: Analysis was performed at 3 phases of arthritis in control and AIA rats: preclinical phase (day 4), onset phase (day 11), and acute phase (day 28). IP was assessed by measuring levels of zonulin and ileal mRNA expression of zonulin. I-inf was assessed by lymphocyte count from rat ileum and by measuring ileal mRNA expression of proinflammatory cytokines. The integrity of the intestinal barrier was evaluated by levels of iFABP. BT and gut microbiota were assessed by LPS, soluble CD14 levels, and 16S RNA sequencing in mesenteric lymph node and by 16S rRNA sequencing in stool, respectively. RESULTS: Plasma zonulin levels increased at the preclinical and onset phase in the AIA group. Plasma levels of iFABP were increased in AIA rats at all stages of the arthritis course. The preclinical phase was characterized by a transient dysbiosis and increased mRNA ileal expression of IL-8, IL-33, and IL-17. At the onset phase, TNF-α, IL-23p19, and IL-8 mRNA expression were increased. No changes in cytokines mRNA expression were observed at the acute phase. Increased CD4+ and CD8+ T cell number was measured in the AIA ileum at day 4 and day 11. No increase in BT was observed. CONCLUSION: These data show that intestinal changes precede the development of arthritis but argue against a strict "correlative" model in which arthritis and gut changes are inseparable.


Assuntos
Artrite Experimental , Interleucina-8 , Ratos , Animais , Disbiose/microbiologia , RNA Ribossômico 16S , Citocinas/metabolismo , Inflamação/patologia , Permeabilidade , RNA Mensageiro
4.
Microorganisms ; 11(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37374948

RESUMO

BACKGROUND: Using genomic data, we determined the origin of MRSA ST398 isolates responsible for invasive infection in patients with no known livestock contact. METHODS: We sequenced the genome of seven MSSA and four MRSA ST398 isolates from patients with invasive infections between 2013 and 2017, using the Illumina technique. Prophage-associated virulence genes and resistance genes were identified. To determine the origin of the isolates, their genome sequences were included in phylogenetic analysis also encompassing the ST398 genomes available on NCBI. RESULTS: All isolates carried the φSa3 prophage, but with variations in the immune evasion cluster: type C in MRSA isolates, and type B in MSSA isolates. All MSSA belonged to the spa type t1451. MRSA strains had the same SCCmec type IVa (2B) cassette and belonged to spa types t899, t4132, t1939 and t2922. All MRSA harbored the tetracycline resistance gene, tet(M). Phylogenetic analysis revealed that MSSA isolates belonged to a cluster of human-associated isolates, while MRSA isolates belonged to a cluster containing livestock-associated MRSA. CONCLUSION: We showed that the clinical isolates MRSA and MSSA ST398 have different origins. An acquisition of virulence genes by livestock-associated MRSA isolates allows them to induce an invasive infection in human.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA