Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1250105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915512

RESUMO

Cassava is a major crop in Sub-Saharan Africa, where it is grown primarily by smallholder farmers. Cassava production is constrained by Cassava mosaic disease (CMD), which is caused by a complex of cassava mosaic begomoviruses (CMBs). A previous study showed that SEGS-1 (sequences enhancing geminivirus symptoms), which occurs in the cassava genome and as episomes during viral infection, enhances CMD symptoms and breaks resistance in cassava. We report here that SEGS-1 also increases viral disease severity in Arabidopsis thaliana plants that are co-inoculated with African cassava mosaic virus (ACMV) and SEGS-1 sequences. Viral disease was also enhanced in Arabidopsis plants carrying a SEGS-1 transgene when inoculated with ACMV alone. Unlike cassava, no SEGS-1 episomal DNA was detected in the transgenic Arabidopsis plants during ACMV infection. Studies using Nicotiana tabacum suspension cells showed that co-transfection of SEGS-1 sequences with an ACMV replicon increases viral DNA accumulation in the absence of viral movement. Together, these results demonstrated that SEGS-1 can function in a heterologous host to increase disease severity. Moreover, SEGS-1 is active in a host genomic context, indicating that SEGS-1 episomes are not required for disease enhancement.

2.
J Virol Methods ; 298: 114301, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34560111

RESUMO

Globally, Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV) occur frequently and in combination cause sweetpotato virus disease (SPVD). Many viral diseases are economically important and negatively impact the production and movement of germplasm across regions. Rapid detection of viruses is critical for effective control. Detection and quantification of viruses directly from sweetpotato remains a challenge. Current diagnostic tests are not sensitive enough to reliably detect viruses directly from the plant or require expensive laboratory equipment and expertise to perform. We developed a simple and rapid loop-mediated isothermal amplification (LAMP) assay for the detection of SPFMV, SPCSV and begomoviruses related to sweet potato leaf curl virus (SPLCV). Laboratory validation recorded 100 % diagnostic sensitivity for all the three viruses. The LAMP assays were customized for field testing using a lyophilized thermostable isothermal master mix in a ready-to-use form that required no cold chain. The average time to positivity (TTP) was: SPFMV 5-30 min, SPCSV 15-43 min s and begomoviruses 28-45 mins. LAMP on-site testing results were comparable to PCR and RT-PCR confirmatory laboratory tests. The LAMP assay is a powerful tool for rapid sweetpotato virus detection at a reasonable cost and thus could serve as quality control systems for planting materials.


Assuntos
Ipomoea batatas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas , Plantas
3.
Plant Dis ; 104(5): 1477-1486, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32196415

RESUMO

In this study, the effect of a Kenyan strain of Sweetpotato leaf curl virus (SPLCV) and its interactions with Sweetpotato feathery mottle virus (SPFMV) and Sweetpotato chlorotic stunt virus (SPCSV) on root yield was determined. Trials were performed during two seasons using varieties Kakamega and Ejumula and contrasting in their resistance to sweetpotato virus disease in a randomized complete block design with 16 treatments replicated three times. The treatments included plants graft inoculated with SPLCV, SPFMV, and SPCSV alone and in possible dual or triple combinations. Yield and yield-related parameters were evaluated at harvest. The results showed marked differences in the effect of SPLCV infection on the two varieties. Ejumula, which is highly susceptible to SPFMV and SPCSV, suffered no significant yield loss from SPLCV infection, whereas Kakamega, which is moderately resistant to SPFMV and SPCSV, suffered an average of 47% yield loss from SPLCV, despite only mild symptoms occurring in both varieties. These results highlight the variability in yield response to SPLCV between sweetpotato cultivars as well as a lack of correlation of SPLCV-related symptoms with yield reduction. In addition, they underline the lack of correlation between resistance to the RNA viruses SPCSV and SPFMV and the DNA virus SPLCV.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Ipomoea batatas , Quênia , Doenças das Plantas
4.
Int J Food Sci ; 2019: 2148914, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863776

RESUMO

Various modes of edible coating application vary in their coat dispersion and film formation, hence the need to determine the most effective mode of application for cassava. Edible surface coatings have been found to be effective in preserving the quality of various food products. However, there are variations in effectiveness among the different coating solutions, hence the need for optimization of the concentrations of the gums used. This study aimed at determining the most efficient coating application method on the cassava postharvest quality. Physiologically mature cassava (variety KME 1) was harvested and divided into seven portions. The various portions were coated using 1.5% xanthan gum, 1.5% xanthan/guar gum, and 2% xanthan/guar gum by both dipping and spraying method. There was no significant difference on the colour, total cyanide, ethylene production, and total phenolic content between the two application methods. The 2% xanthan/guar gum coating showed a significant difference on the dry matter content while the 1.5% xanthan gum coating had a significant difference on the respiration rate and weight loss. The 1.5 xanthan treated roots had a final dry matter content of 72.5% for the sprayed samples and 75.98% for the dipped sample while the 2% xanthan/guar gum treated roots had a final dry matter content of 64.6% and 74.1% for the dipped and sprayed root samples, respectively. The 1.5% xanthan and 2% xanthan/guar gum treated roots showed no significant difference in their action on dry matter content. The 1.5% xanthan/guar dipped and sprayed samples differed significantly on their effect on flesh firmness with final values of 35.4N and 46.1N, respectively, at 20 days after harvest. This study suggested that based on the coating solution and the parameters being observed, there generally was no varying effect of dipping and spraying methods of coating application. The choice of the efficient mode of application to use will depend on other factors such as the easiness of application.

5.
Virol J ; 15(1): 128, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30107851

RESUMO

BACKGROUND: Cassava brown streak disease (CBSD) has a viral aetiology and is caused by viruses belonging to the genus Ipomovirus (family Potyviridae), Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Molecular and serological methods are available for detection, discrimination and quantification of cassava brown streak viruses (CBSVs) in infected plants. However, precise determination of the viral RNA localization in infected host tissues is still not possible pending appropriate methods. RESULTS: We have developed an in situ hybridization (ISH) assay based on RNAscope® technology that allows the sensitive detection and localization of CBSV RNA in plant tissues. The method was initially developed in the experimental host Nicotiana rustica and was then further adapted to cassava. Highly sensitive and specific detection of CBSV RNA was achieved without background and hybridization signals in sections prepared from non-infected tissues. The tissue tropism of CBSV RNAs appeared different between N. rustica and cassava. CONCLUSIONS: This study provides a robust method for CBSV detection in the experimental host and in cassava. The protocol will be used to study CBSV tropism in various cassava genotypes, as well as CBSVs/cassava interactions in single and mixed infections.


Assuntos
Hibridização In Situ , Manihot/virologia , Doenças das Plantas/virologia , Potyviridae/genética , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/virologia
6.
Insects ; 8(1)2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28264479

RESUMO

Whiteflies, Bemisia tabaci (Gennadius) are major insect pests that affect many crops such as cassava, tomato, beans, cotton, cucurbits, potato, sweet potato, and ornamental crops. Bemisia tabaci transmits viral diseases, namely cassava mosaic and cassava brown streak diseases, which are the main constraints to cassava production, causing huge losses to many small-scale farmers. The aim of this work was to determine the phylogenetic relationships among Bemisia tabaci species in major cassava growing areas of Kenya. Surveys were carried out between 2013 and 2015 in major cassava growing areas (Western, Nyanza, Eastern, and Coast regions), for cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). Mitochondrial cytochrome oxidase I (mtCOI-DNA) was used to determine the genetic diversity of B. tabaci. Phylogenetic trees were constructed using Bayesian methods to understand the genetic diversity across the study regions. Phylogenetic analysis revealed two B. tabaci species present in Kenya, sub-Saharan Africa 1 and 2 comprising five distinct clades (A-E) with percent sequence similarity ranging from 97.7 % to 99.5%. Clades B, C, D, and E are predominantly distributed in the Western and Nyanza regions of Kenya whereas clade B is dominantly found along the coast, the eastern region, and parts of Nyanza. Our B. tabaci clade A groups with sub-Saharan Africa 2-(SSA2) recorded a percent sequence similarity of 99.5%. In this study, we also report the identification of SSA2 after a 15 year absence in Kenya. The SSA2 species associated with CMD has been found in the Western region of Kenya bordering Uganda. More information is needed to determine if these species are differentially involved in the epidemiology of the cassava viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...