Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17871, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857674

RESUMO

The chloroplast (cp) genome is an adequate genomic resource to investigate evolutionary relationships among plant species and it carries marker genes available for species identification. The Cicer reticulatum is one of perennial species as the progenitor of cultivated chickpeas. Although a large part of the land plants has a quadruple chloroplast genome organization, the cp genome of C. reticulatum consists of one LSC (Large Single Copy Region), one SSC (Small Single Copy Region), and one IR (Inverted Repeat) region, which indicates that it has an untypical and unique structure. This type of chloroplast genome belongs to the IR-lacking clade. Chloroplast DNA (cpDNA) was extracted from fresh leaves using a high salt-based protocol and sequencing was performed using DNA Nanoball Sequencing technology. The comparative analysis employed between the species to examine genomic differences and gene homology. The study also included codon usage frequency analysis, hotspot divergence analysis, and phylogenetic analysis using various bioinformatics tools. The cp genome of C. reticulatum was found 125,794 bp in length, with an overall GC content of 33.9%. With a total of 79 protein-coding genes, 34 tRNA genes, and 4 rRNA genes. Comparative genomic analysis revealed 99.93% similarity between C. reticulatum and C. arietinum. Phylogenetic analysis further indicated that the closest evolutionary relative to C. arietinum was C. reticulatum, whereas the previously sequenced wild Cicer species displayed slight distinctions across their entire coding regions. Several genomic regions, such as clpP and ycf1, were found to exhibit high nucleotide diversity, suggesting their potential utility as markers for investigating the evolutionary relationships within the Cicer genus. The first complete cp genome sequence of C. reticulatum will provide novel insights for future genetic research on Cicer crops.


Assuntos
Cicer , Genoma de Cloroplastos , Cicer/genética , Filogenia , Genoma de Cloroplastos/genética , Análise de Sequência de DNA , Genômica
2.
Sci Rep ; 13(1): 14959, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696838

RESUMO

Lens lamottei is a member of the Fabaceae family and the second gene pool of the genus Lens. The environmental factors that drove the divergence among wild and cultivated species have been studied extensively. Recent research has focused on genomic signatures associated with various phenotypes with the acceleration of next-generation techniques in molecular profiling. Therefore, in this study, we provide the complete sequence of the chloroplast genome sequence in the wild Lens species L. lamottei with a deep coverage of 713 × next-generation sequencing (NGS) data for the first time. Compared to the cultivated species, Lens culinaris, we identified synonymous, and nonsynonymous changes in the protein-coding regions of the genes ndhB, ndhF, ndhH, petA, rpoA, rpoC2, rps3, and ycf2 in L. lamottei. Phylogenetic analysis of chloroplast genomes of various plants under Leguminosae revealed that L. lamottei and L. culinaris are closest to one another than to other species. The complete chloroplast genome of L. lamottei also allowed us to reanalyze previously published transcriptomic data, which showed high levels of gene expression for ATP-synthase, rubisco, and photosystem genes. Overall, this study provides a deeper insight into the diversity of Lens species and the agricultural importance of these plants through their chloroplast genomes.


Assuntos
Fabaceae , Genoma de Cloroplastos , Lens (Planta) , Genoma de Cloroplastos/genética , Filogenia , Aceleração
3.
Genomics ; 115(5): 110699, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37597791

RESUMO

Ascochyta blight (AB) is a major disease in chickpeas (Cicer arietinum L.) that can cause a yield loss of up to 100%. Chickpea germplasm collections at the center of origin offer great potential to discover novel sources of resistance to pests and diseases. Herein, 189 Cicer arietinum samples were genotyped via genotyping by sequencing. This chickpea collection was phenotyped for resistance to an aggressive Turkish Didymella rabiei Pathotype IV isolate. Genome-wide association studies based on different models revealed 19 single nucleotide polymorphism (SNP) associations on chromosomes 1, 2, 3, 4, 7, and 8. Although eight of these SNPs have been previously reported, to the best of our knowledge, the remaining ten were associated with AB resistance for the first time. The regions identified in this study can be addressed in future studies to reveal the genetic mechanism underlying AB resistance and can also be utilized in chickpea breeding programs to improve AB resistance in new chickpea varieties.


Assuntos
Cicer , Cicer/genética , Mapeamento Cromossômico , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Genótipo , Doenças das Plantas/genética , Melhoramento Vegetal
4.
Sci Rep ; 12(1): 15068, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064865

RESUMO

Lens is a member of the Papilionoideae subfamily of Fabaceae and is generally used as a source of vegetable protein as part of human diets in many regions worldwide. Chloroplast (cp) genomes are highly active genetic components of plants and can be utilized as molecular markers for various purposes. As one of the wild lentil species, the Lens ervoides cp genome has been sequenced for the first time in this study using next-generation sequencing. The de novo assembly of the cp genome resulted in a single 122,722 bp sequence as two separate coexisting structural haplotypes with similar lengths. Results indicated that the cp genome of L. ervoides belongs to the inverted repeat lacking clade. Several noteworthy divergences within the coding regions were observed in ndhB, ndhF, rbcL, rpoC2, and ycf2 genes. Analysis of relative synonymous codon usage showed that certain genes, psbN, psaI, psbI, psbE, psbK, petD, and ndhC, preferred using biased codons more often and therefore might have elevated expression and translation efficiencies. Overall, this study exhibited the divergence level between the wild-type and cultured lentil cp genomes and pointed to certain regions that can be utilized as distinction markers for various goals.


Assuntos
Genoma de Cloroplastos , Lens (Planta) , Códon , Humanos , Lens (Planta)/genética , Fases de Leitura Aberta , Filogenia
5.
Curr Genomics ; 23(1): 50-65, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35814936

RESUMO

Background: Chickpea is one of Turkey's most significant legumes, and because of its high nutritional value, it is frequently preferred in human nourishment.Chloroplasts, which have their own genetic material, are organelles responsible for photosynthesis in plant cells and their genome contains non-trivial information about the molecular features and evolutionary process of plants. Objective: Current study aimed at revealing complete chloroplast genome sequence of one of the wild type Cicer species, Cicer bijugum, and comparing its genome with cultivated Cicer species, Cicer arietinum, by using bioinformatics analysis tools. Except for Cicer arietinum, there has been no study on the chloroplast genome sequence of Cicer species.Therefore, we targeted to reveal the complete chloroplast genome sequence of wild type Cicer species, Cicer bijugum, and compare the chloroplast genome of Cicer bijugum with the cultivated one Cicer arietinum. Methods: In this study, we sequenced the whole chloroplast genome of Cicer bijugum, one of the wild types of chickpea species, with the help Next Generation Sequencing platform and compared it with the chloroplast genome of the cultivated chickpea species, Cicer arietinum, by using online bioinformatics analysis tools. Results: We determined the size of the chloroplast genome of C. bijugum as 124,804 bp and found that C. bijugum did not contain an inverted repeat region in its chloroplast genome. Comparative analysis of the C. bijugum chloroplast genome uncovered thirteen hotspot regions (psbA, matK, rpoB, rpoC1, rpoC2, psbI, psbK, accD, rps19, ycf2, ycf1, rps15, and ndhF) and seven of them (matK, accD, rps19, ycf1, ycf2, rps15 and ndhF) could potentially be used as strong molecular markers for species identification. It has been determined that C. bijugum was phylogenetically closer to cultivated chickpea as compared to the other species. Conclusion: It is aimed that the data obtained from this study, which is the first study in which whole chloroplast genomes of wild chickpea species were sequenced, will guide researchers in future molecular, evolutionary, and genetic engineering studies with chickpea species.

6.
J Basic Microbiol ; 62(5): 604-610, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35170765

RESUMO

Optical mapping approaches are widely preferred and applied in different branches of genomic studies because of their accuracy, low cost, and high efficiency. In the current study, a sequence orientation of the Fusarium oxysporum f. sp. melongenae (FOMG) genome that is deposited in GenBank National Center for Biotechnology Information under accession number MPIL00000000 was used as the reference genome, which we checked with Bionano Genomics optical mapping approaches. The optical mapping produced 103 contigs, the longest of which was 3.05 Mb. The N50 value of optical map contigs is 0.85 Mb. The sequences of the FOMG reference genome and optical map mainly match each other. Results obtained in the current study indicate that optical mapping can be used to construct complete and gapless assemblies of the FOMG genome. It also can be applied to validate a previous genome assembly.


Assuntos
Fusarium , Fusarium/genética , Genoma Fúngico , Genômica , Doenças das Plantas
7.
Mol Biol Rep ; 49(6): 5283-5291, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34741707

RESUMO

BACKGROUND: Apricots originated from China, Central Asia and the Near East and arrived in Anatolia, and particularly in their second homeland of Malatya province in Turkey. Apricots are outstanding summer fruits, with their beautiful attractive color, delicious sweet taste, aroma and high vitamin and mineral content. METHODS AND RESULTS: In the current study, a total of 259 apricots genotypes from different geographical origins in Turkey were used. Significant variations were detected in fruit firmness (FF), fruit flesh color (FFC), flowering time (FT), and soluble solid content (SSC). A total of 11,532 SNPs based on DArT were developed and used in the analyses of population structure and association mapping (AM). According to the STRUCTURE (v.2.2) analysis, the apricot genotypes were divided into three groups. The mixed linear model with Q and K matrixes were used to detect the associations between the SNPs and four traits. A total of 131 SNPs were associated with FF, FFC and SSC. No SNP marker was detected associated with FT. CONCLUSION: The results demonstrated that AM had high potential of revealing the markers associated with economically important traits in apricot. The SNPs identified in the study can be used in future breeding programs for marker-assisted selection in apricot.


Assuntos
Prunus armeniaca , Frutas/química , Frutas/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Prunus armeniaca/química , Prunus armeniaca/genética , Turquia
8.
Curr Genomics ; 21(3): 212-223, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33071615

RESUMO

BACKGROUND: Cicer reticulatum L. is the wild progenitor of chickpea Cicer arietinum L., the fourth most important pulse crop in the world. Iron (Fe) and zinc (Zn) are vital micronutrients that play crucial roles in sustaining life by acting as co-factors for various proteins. AIMS AND OBJECTIVES: In order to improve micronutrient-dense chickpea lines, this study aimed to investigate variability and detect DNA markers associated with Fe and Zn concentrations in the seeds of 73 cultivated (C. arietinum L.) and 107 C. reticulatum genotypes. METHODS: A set of 180 accessions was genotyped using 20,868 single nucleotide polymorphism (SNP) markers obtained from genotyping by sequencing analysis. RESULTS: The results revealed substantial variation in the seed Fe and Zn concentration of the surveyed population. Using STRUCTURE software, the population structure was divided into two groups according to the principal component analysis and neighbor-joining tree analysis. A total of 23 and 16 associated SNP markers related to Fe and Zn concentrations, respectively were identified in TASSEL software by the mixed linear model method. Significant SNP markers found in more than two environments were accepted as more reliable than those that only existed in a single environment. CONCLUSION: The identified markers can be used in marker-assisted selection in chickpea breeding programs for the improvement of seed Fe and Zn concentrations in the chickpea.

9.
Genomics ; 112(6): 4536-4546, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32763354

RESUMO

SNP markers linked to genes controlling Ca and Mn uptake were identified in the common bean seeds using DArT-based association mapping (AM). The Ca concentration in the seeds varied between 475 and 3,100 mg kg-1 with an average of 1,280.9 mg kg-1 and the Mn concentration ranged from 4.87 to 27.54 mg kg-1 with a mean of 11.76 mg kg-1. A total of 19,204 SNP markers were distributed across 11 chromosomes that correspond to the haploid genome number of the common bean. The highest value of ΔK was determined as K = 2, and 173 common bean genotypes were split into two main subclusters as POP1 (Mesoamerican) and POP2 (Andean). The results of the UPGMA dendrogram and PCA confirmed those of STRUCTURE analysis. MLM based on the Q + K model identified a large number of markers-trait associations. Of the 19,204 SNPs, five (on Pv2, 3, 8, 10 and 11) and four (on Pv2, 3, 8 and 11) SNPs were detected to be significantly related to the Ca content of the beans grown in Bornova and Menemen, respectively in 2015. In 2016, six SNPs (on Pv1-4, 8 and 10) were identified to be significantly associated with the Ca content of the seeds obtained from Bornova and six SNPs (on Pv1-4, 8 and 10) from Menemen. Eight (on Pv3, 5 and 11) and four (on Pv2, 5 and 11) SNPs had a significant association with Mn content in Bornova in 2015 and 2016, respectively. In Menemen, eight (on Pv3, 5, 8 and 11) and 11 (on Pv1, 2, 5, 10 and 11) SNPs had a significant correlation with Mn content in 2015 and 2016, respectively.


Assuntos
Cálcio/metabolismo , Manganês/metabolismo , Phaseolus/genética , Sementes/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Genótipo , Phaseolus/embriologia , Phaseolus/metabolismo , Polimorfismo de Nucleotídeo Único , Sementes/metabolismo
10.
Genomics ; 112(2): 1633-1642, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31669504

RESUMO

Chickpea (Cicer arietinum L.) is one of the oldest and most important pulse crops grown and consumed all over the world, especially in developing countries. Magnesium (Mg) and manganese (Mn) are essential plant nutrients in terms of human health and many health problems arise in their deficiencies. The objectives of this study were to characterize genetic variability in the seed Mg and Mn concentrations and identify single nucleotide polymorphism (SNP) markers associated with these traits in 107 Cicer reticulatum and 73C. arietinum genotypes, using a genome wide association study. The genotypes were grown in four environments, characterized for Mg and Mn concentrations, and genotyped with 121,841 SNP markers. The population showed three-fold and two-fold variation for the Mg and Mn concentrations, respectively. The population structure was identified using STRUCTURE software, which divided 180 genotypes into two (K = 2) groups. Principal component analysis and neighbor joining tree analysis confirmed the results of STRUCTURE. A total of 4 and 16 consistent SNPs were detected for the Mg and Mn concentrations, respectively. The identified markers can be utilized in breeding of chickpea to increase Mg and Mn levels in order to improve human and livestock nutrition.


Assuntos
Cicer/genética , Magnésio/metabolismo , Manganês/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Cicer/metabolismo , Genes de Plantas , Característica Quantitativa Herdável , Sementes/genética , Sementes/metabolismo
11.
Genomics ; 111(6): 1873-1881, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30594584

RESUMO

Due to its high nutritional value, chickpea is one of the most important and cost-effective legumes for human diet. Nutrient elements, such as Cu, P, K have numerous essential functions for the human metabolism. In this study, association mapping of loci linked to the seed Cu, P and K concentrations were performed on a population consisting of 107 Cicer reticulatum and 73 Cicer arietinum individuals in four environments (two locations x two years). A total of 121,840 SNPs were genotyped across 180 individuals by GBS analysis. The association mapping between the SNP markers and the seed Cu, P, K concentrations were identified and eight SNPs were found to be significantly associated with variations in three nutrient elements in more than two environments This research suggests that association mapping is a useful methodology for the identification of loci controlling the Cu, P and K uptake in chickpea seeds for further association mapping, molecular breeding, and marker-assisted selection and plant breeding studies and provides a broader understanding of the relationship between the investigated Cicer species and the effects of environmental conditions.


Assuntos
Cicer , Cobre/metabolismo , Loci Gênicos , Fósforo/metabolismo , Polimorfismo de Nucleotídeo Único , Potássio/metabolismo , Sementes , Mapeamento Cromossômico , Cicer/genética , Cicer/metabolismo , Ligação Genética , Marcadores Genéticos , Genótipo , Sementes/genética , Sementes/metabolismo
12.
G3 (Bethesda) ; 8(5): 1409-1416, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29588380

RESUMO

This study evaluated Mn concentration in the seeds of 120 RILs of lentil developed from the cross "CDC Redberry" × "ILL7502". Micronutrient analysis using atomic absorption spectrometry indicated mean seed manganese (Mn) concentrations ranging from 8.5 to 26.8 mg/kg, based on replicated field trials grown at three locations in Turkey in 2012 and 2013. A linkage map of lentil was constructed and consisted of seven linkage groups with 5,385 DNA markers. The total map length was 973.1 cM, with an average distance between markers of 0.18 cM. A total of 6 QTL for Mn concentration were identified using composite interval mapping (CIM). All QTL were statistically significant and explained 15.3-24.1% of the phenotypic variation, with LOD scores ranging from 3.00 to 4.42. The high-density genetic map reported in this study will increase fundamental knowledge of the genome structure of lentil, and will be the basis for the development of micronutrient-enriched lentil genotypes to support biofortification efforts.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Lens (Planta)/genética , Manganês/metabolismo , Locos de Características Quantitativas/genética , Sementes/genética , Análise de Variância , Cruzamentos Genéticos , Ligação Genética , Endogamia , Solo/química
13.
PLoS One ; 13(1): e0191375, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29351563

RESUMO

BACKGROUND: Lentil (Lens culinaris ssp. culinaris Medikus) is a diploid (2n = 2x = 14), self-pollinating grain legume with a haploid genome size of about 4 Gbp and is grown throughout the world with current annual production of 4.9 million tonnes. MATERIALS AND METHODS: A consensus map of lentil (Lens culinaris ssp. culinaris Medikus) was constructed using three different lentils recombinant inbred line (RIL) populations, including "CDC Redberry" x "ILL7502" (LR8), "ILL8006" x "CDC Milestone" (LR11) and "PI320937" x "Eston" (LR39). RESULTS: The lentil consensus map was composed of 9,793 DArT markers, covered a total of 977.47 cM with an average distance of 0.10 cM between adjacent markers and constructed 7 linkage groups representing 7 chromosomes of the lentil genome. The consensus map had no gap larger than 12.67 cM and only 5 gaps were found to be between 12.67 cM and 6.0 cM (on LG3 and LG4). The localization of the SNP markers on the lentil consensus map were in general consistent with their localization on the three individual genetic linkage maps and the lentil consensus map has longer map length, higher marker density and shorter average distance between the adjacent markers compared to the component linkage maps. CONCLUSION: This high-density consensus map could provide insight into the lentil genome. The consensus map could also help to construct a physical map using a Bacterial Artificial Chromosome library and map based cloning studies. Sequence information of DArT may help localization of orientation scaffolds from Next Generation Sequencing data.


Assuntos
Lens (Planta)/genética , Mapeamento Cromossômico/métodos , Sequência Consenso , DNA de Plantas/genética , Ligação Genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único
15.
PLoS One ; 11(3): e0149210, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26978666

RESUMO

Lentil (Lens culinaris Medik.) is an excellent source of protein and carbohydrates and is also rich in essential trace elements for the human diet. Selenium (Se) is an essential micronutrient for human health and nutrition, providing protection against several diseases and regulating important biological systems. Dietary intake of 55 µg of Se per day is recommended for adults, with inadequate Se intake causing significant health problems. The objective of this study was to identify and map quantitative trait loci (QTL) of genes controlling Se accumulation in lentil seeds using a population of 96 recombinant inbred lines (RILs) developed from the cross "PI 320937" × "Eston" grown in three different environments for two years (2012 and 2013). Se concentration in seed varied between 119 and 883 µg/kg. A linkage map consisting of 1,784 markers (4 SSRs, and 1,780 SNPs) was developed. The map spanned a total length of 4,060.6 cM, consisting of 7 linkage groups (LGs) with an average distance of 2.3 cM between adjacent markers. Four QTL regions and 36 putative QTL markers, with LOD scores ranging from 3.00 to 4.97, distributed across two linkage groups (LG2 and LG5) were associated with seed Se concentration, explaining 6.3-16.9% of the phenotypic variation.


Assuntos
Genes de Plantas , Lens (Planta)/embriologia , Locos de Características Quantitativas , Sementes/metabolismo , Selênio/metabolismo , Ligação Genética , Lens (Planta)/genética , Polimorfismo de Nucleotídeo Único , Sementes/genética
16.
Environ Sci Pollut Res Int ; 20(9): 6178-83, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23589241

RESUMO

Olive tree leaf samples were collected to investigate their possible use for biomonitoring of lipophilic toxic substances. The samples were analyzed for 28 polychlorinated biphenyls (PCB) congeners. Twelve congeners were detected in the samples. PCB-60, 77, 81, 89, 105, 114, and 153 were the most frequently detected congeners ranging from 32 % for PCB-52 to 97 % for PCB-81. Σ12PCBs concentration varied from below detection limit to 248 ng/g wet weight in the sampling area, while the mean congener concentrations ranged from 0.06 ng/g (PCB-128 + 167) to 64.2 ng/g wet weight (PCB-60). Constructed concentration maps showed that olive tree leaves can be employed for the estimation of spatial distrubution of these congeners.


Assuntos
Monitoramento Ambiental/métodos , Olea/química , Olea/metabolismo , Folhas de Planta/química , Bifenilos Policlorados/química , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Folhas de Planta/metabolismo , Bifenilos Policlorados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...