Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 288(Pt 1): 132236, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34649090

RESUMO

Hierarchical orderd macroporous TiO2 architecture (HOMTA) was prepared with aid of ethylenediamine (EDA) and investigated the impact of amine molecules on the properties of TiO2 architecture. The different variation of amine molecules (EDA) leads to tunning the morphology under hydrothermal approach which is confirmed by FESEM and TEM analysis. The XRD and Raman studies confirms the crystal structure of anatase and brookite phase of TiO2. The surface of the architecture strongly depended on the concentration of EDA which plays a vital role in surface area which is revealed by Brunauer Emmett-Teller (BET) analysis. The obtained HOMTA was employed as photocatalyst and active photoanode in the dye sensitized solar cells (DSSC). The DSSC device exhibits excellent efficiency (η) of 5.27% for the EDA capped TiO2 (S5) which had high surface area (167.11 m2/g) for better dye loading, whereas the lower concentration of EDA capped TiO2 (S1, S2, S3 and S4) resulted the efficiency of 2.14, 3.90, 3.25 and 4.37%, respectively. The efficiency of photocatlysis degradation of the prepared samples (S1, S2, S3, S4 and S5) was 94.8, 90.47, 91.41, 91.32 and 93.75% under light source. The excellent photocatalysis property was achieved by S5 within 6 min due to high surface area which inducing more active site.


Assuntos
Recuperação e Remediação Ambiental , Titânio , Corantes , Luz Solar
2.
RSC Adv ; 11(31): 19059-19069, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35478652

RESUMO

Hierarchical nanostructures and the effects of ligands on their structure formation were investigated. Morphological analysis showed the change in the morphology from nanospindles to hollow hexagonal nanodisks with the change in ligands. Structural analysis exhibited the formation of both hexagonal ZnO and monoclinic CuO structures in the composition. The elemental composition confirms the presence of CuO and ZnO in the composition. An ultra-fast degradation was achieved for the nanocomposites. The ZnO/CuO composite with ethylenediamine showed the best activity by degrading 98.77% of the methylene blue dye in 36 min. A possible photocatalytic mechanism is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...