Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Electron Mater ; 4(12): 6357-6363, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36588621

RESUMO

The ferroelectric (FE)-antiferroelectric (AFE) transition in Hf1-x Zr x O2 (HZO) is for the first time shown in a metal-ferroelectric-semiconductor (MFS) stack based on the III-V material InAs. As InAs displays excellent electron mobility and a narrow band gap, the integration of ferroelectric thin films for nonvolatile operations is highly relevant for future electronic devices and motivates further research on ferroelectric integration. When increasing the Zr fraction x from 0.5 to 1, the stack permittivity increases as expected, and the transition from FE to AFE-like behavior is observed by polarization and current-voltage characteristics. At x = 0.8 the polarization of the InAs-based stacks shows a larger FE-contribution as a more open hysteresis compared to both literature and reference metal-ferroelectric-metal (MFM) devices. By field-cycling the devices, the switching domains are studied as a function of the cycle number, showing that the difference in FE-AFE contributions for MFM and MFS devices is stable over switching and not an effect of wake-up. The FE contribution of the switching can be accessed by successively lowering the bias voltage in a proposed pulse train. The possibility of enhanced nonvolatility in Zr-rich HZO is relevant for device stacks that would benefit from an increase in permittivity and a lower operating voltage. Additionally, an interfacial layer (IL) is introduced between the HZO film and the InAs substrate. The interfacial quality is investigated as frequency-dependent capacitive dispersion, showing little change for varying ZrO2 concentrations and with or without included IL. This suggests material processing that is independently limiting the interfacial quality. Improved endurance of the InAs-Hf1-x Zr x O2 devices with x = 0.8 was also observed compared to x = 0.5, with further improvement with the additional IL for Zr-rich HZO on InAs.

2.
ACS Appl Mater Interfaces ; 13(9): 11089-11095, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33625827

RESUMO

Ferroelectric memories based on hafnium oxide are an attractive alternative to conventional memory technologies due to their scalability and energy efficiency. However, there are still many open questions regarding the optimal material stack and processing conditions for reliable device performance. Here, we report on the impact of the sputtering process conditions of the commonly used TiN top electrode on the ferroelectric properties of Hf1-xZrxO2. By manipulating the deposition pressure and chemistry, we control the preferential orientation of the TiN grains between (111) and (002). We observe that (111) textured TiN is superior to (002) texturing for achieving high remanent polarization (Pr). Furthermore, we find that additional nitrogen supply during TiN deposition leads to >5× greater endurance, possibly by limiting the scavenging of oxygen from the Hf1-xZrxO2 film. These results help explain the large Pr variation reported in the literature for Hf1-xZrxO2/TiN and highlights the necessity of tuning the top electrode of the ferroelectric stack for successful device implementation.

3.
Nanotechnology ; 32(16): 165602, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33361572

RESUMO

Monolithic integration of III-V semiconductors with Silicon technology has instigated a wide range of new possibilities in the semiconductor industry, such as combination of digital circuits with optical sensing and high-frequency communication. A promising CMOS compatible integration process is rapid melt growth (RMG) that can yield high quality single crystalline material at low cost. This paper represents the study on ultra-thin InSb-on-insulator microstructures integrated on a Si platform by a RMG-like process. We utilize flash lamp annealing (FLA) to melt and recrystallize the InSb material for an ultra-short duration (milliseconds), to reduce the thermal budget necessary for integration with Si technology. We compare the result from FLA to regular rapid thermal annealing (seconds). Recrystallized InSb was characterized using electron back scatter diffraction which indicate a transition from nanocrystalline structure to a crystal structure with grain sizes exceeding 1 µm after the process. We further see a 100× improvement in electrical resistivity by FLA annealed sample when compared to the as-deposited InSb with an average Hall mobility of 3100 cm2 V-1 s-1 making this a promising step towards realizing monolithic mid-infrared detectors and quantum devices based on InSb.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA