Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 2610, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545622

RESUMO

High-power continuous-wave (CW) lasers are used in a variety of areas including industry, medicine, communications, and defense. Yet, conventional optics, which are based on multi-layer coatings, are damaged when illuminated by high-power CW laser light, primarily due to thermal loading. This hampers the effectiveness, restricts the scope and utility, and raises the cost and complexity of high-power CW laser applications. Here we demonstrate monolithic and highly reflective mirrors that operate under high-power CW laser irradiation without damage. In contrast to conventional mirrors, ours are realized by etching nanostructures into the surface of single-crystal diamond, a material with exceptional optical and thermal properties. We measure reflectivities of greater than 98% and demonstrate damage-free operation using 10 kW of CW laser light at 1070 nm, focused to a spot of 750 µm diameter. In contrast, we observe damage to a conventional dielectric mirror when illuminated by the same beam. Our results initiate a new category of optics that operate under extreme conditions, which has potential to improve or create new applications of high-power lasers.

2.
Opt Lett ; 44(16): 4056-4059, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31415546

RESUMO

We experimentally demonstrate on-chip supercontinuum generation in the visible region in angle-etched diamond waveguides. We measure an output spectrum spanning 670-920 nm in a 5-mm-long waveguide using 100-fs pulses with 187 pJ of incident pulse energy. Our fabrication technique, combined with diamond's broad transparency window, offers a potential route toward broadband supercontinuum generation in the UV domain.

3.
Nat Commun ; 9(1): 2012, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789553

RESUMO

The uncontrolled interaction of a quantum system with its environment is detrimental for quantum coherence. For quantum bits in the solid state, decoherence from thermal vibrations of the surrounding lattice can typically only be suppressed by lowering the temperature of operation. Here, we use a nano-electro-mechanical system to mitigate the effect of thermal phonons on a spin qubit - the silicon-vacancy colour centre in diamond - without changing the system temperature. By controlling the strain environment of the colour centre, we tune its electronic levels to probe, control, and eventually suppress the interaction of its spin with the thermal bath. Strain control provides both large tunability of the optical transitions and significantly improved spin coherence. Finally, our findings indicate the possibility to achieve strong coupling between the silicon-vacancy spin and single phonons, which can lead to the realisation of phonon-mediated quantum gates and nonlinear quantum phononics.

4.
Opt Express ; 22(25): 30924-33, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607041

RESUMO

Lithium Niobate (LN) is an important nonlinear optical material. Here we demonstrate LN microdisk resonators that feature optical quality factor ~10(5), realized using robust and scalable fabrication techniques, that operate over a wide wavelength range spanning visible and near infrared. Using our resonators, and leveraging LN's large second order optical nonlinearity, we demonstrate on-chip second harmonic generation with a conversion efficiency of 0.109 W(-1).

5.
Opt Express ; 21(3): 3043-54, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481762

RESUMO

A theoretical analysis to enhance the quantum efficiency of a meander-line superconducting single photon detector without increasing the length or thickness of the active element is proposed. The general idea is to utilize the plasmonic nature of a superconducting layer to increase the surface absorption of the input optical signal. To satisfy both optical guiding and photon detection considerations of the design, a coefficient is introduced as a measure to maintain the device sensitivity while crossing over from the current crowding to vortex-based detection mechanisms.


Assuntos
Condutometria/instrumentação , Nanotubos/química , Fotometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Nanotubos/ultraestrutura , Fótons
6.
Opt Express ; 20(21): 23610-6, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23188325

RESUMO

We have experimentally compared the critical current, dark count rate and photo-response of 100nm wide superconducting nanowires with different bend designs. Enhanced critical current for nanowires with optimally rounded bends, and thus with no current crowding, are observed. Furthermore, we find that the optimally designed bend significantly reduces the dark counts without compromising the photo-response of the device. The results can lead to major improvements in superconducting nanowire single photon detectors.


Assuntos
Artefatos , Nanotubos/química , Nanotubos/efeitos da radiação , Fotometria/instrumentação , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Nanotubos/ultraestrutura , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA