Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1794: 148071, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36058283

RESUMO

INTRODUCTION: In this study, we aimed to target two molecules, transforming growth factor-beta (TGF-ß) and dynamin to explore their roles in blood-brain barrier (BBB) disruption in hypertension. METHODS: For this purpose, angiotensin (ANG) II-induced hypertensive mice were treated with SB-431542, an inhibitor of the ALK5/TGF-ß type I receptor, and dynasore, an inhibitor of dynamin. Albumin-Alexa fluor 594 was used to assess BBB permeability. The alterations in the expression of claudin-5, caveolin (Cav)-1, glucose transporter (Glut)-1, and SMAD4 in the cerebral cortex and the hippocampus were evaluated by quantification of immunofluorescence staining intensity. RESULTS: ANG II infusion increased BBB permeability to albumin-Alexa fluor 594 which was reduced by SB-431542 (P < 0.01), but not by dynasore. In hypertensive animals treated with dynasore, claudin-5 immunofluorescence intensity increased in the cerebral cortex and hippocampus while it decreased in the cerebral cortex of SB-431542 treated hypertensive mice (P < 0.01). Both dynasore and SB-431542 prevented the increased Cav-1 immunofluorescence intensity in the cerebral cortex and hippocampus of hypertensive animals (P < 0.01). SB-431542 and dynasore decreased Glut-1 immunofluorescence intensity in the cerebral cortex and hippocampus of mice receiving ANG II (P < 0.01). SB-431542 increased SMAD4 immunofluorescence intensity in the cerebral cortex of hypertensive animals, while in the hippocampus a significant decrease was noted by both SB-431542 and dynasore (P < 0.01). CONCLUSION: Our data suggest that inhibition of the TGFß type I receptor prevents BBB disruption under hypertensive conditions. These results emphasize the therapeutic potential of targeting TGFß signaling as a novel treatment modality to protect the brain of hypertensive patients.


Assuntos
Barreira Hematoencefálica , Hipertensão , Albuminas/metabolismo , Angiotensina II/metabolismo , Animais , Benzamidas , Barreira Hematoencefálica/metabolismo , Claudina-5/metabolismo , Dioxóis , Dinaminas/metabolismo , Hidrazonas , Camundongos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Fator de Crescimento Transformador beta/metabolismo
2.
Epilepsy Res ; 184: 106939, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35785634

RESUMO

OBJECTIVE: Most currently available antiepileptics are not fully effective in the prevention of seizures in absence epilepsy owing to the presence of blood-brain barrier (BBB). We aimed to test whether binding an antiepileptic drug, lacosamide (LCM), to glucose-coated gold nanoparticles (GNPs) enables efficient brain drug delivery to suppress the epileptic activity in WAG/Rij rats with absence epilepsy. METHODS: In these animals, intracranial-EEG recording, behavioral test, in vivo imaging of LCM and LCM-GNP conjugate distribution in the brain, inductively coupled plasma mass spectrometry analysis, immunofluorescence staining of glucose transporter (Glut)- 1, glial fibrillary acidic protein (GFAP), and p-glycoprotein (P-gp) and electron microscopy were performed. RESULTS: Lacosamide-GNP conjugates decreased the amplitude and frequency of spike-wave-like discharges (SWDs) and alleviated the anxiety-like behavior as assessed by EEG and elevated plus-maze test, respectively (p < 0.01). The in vivo imaging system results showed higher levels of fluorescein dye tagged to LCM-GNP in the brain during the 5-day injection period (p < 0.01). Immunofluorescence staining displayed decreased P-gp, Glut-1, and GFAP expression by LCM-GNP conjugate treatment predominantly in the cerebral cortex suggesting a potential functionality of this brain region in the modulation of neuronal activity in our experimental setting (p < 0.01). SIGNIFICANCE: We suggest that the conjugation of LCM to GNPs may provide a novel approach for efficient brain drug delivery in light of the effectiveness of our strategy not only in suppressing the seizure activity but also in decreasing the need to use high dosages of the antiepileptics to reduce the frequently encountered side effects in drug-resistant epilepsy.


Assuntos
Epilepsia Tipo Ausência , Nanopartículas Metálicas , Animais , Anticonvulsivantes/uso terapêutico , Barreira Hematoencefálica , Modelos Animais de Doenças , Eletroencefalografia/métodos , Epilepsia Tipo Ausência/tratamento farmacológico , Ouro/uso terapêutico , Lacosamida/uso terapêutico , Ratos , Convulsões/tratamento farmacológico
3.
Life Sci ; 257: 118081, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663576

RESUMO

Temporal lobe epilepsy (TLE) is the most common form of epilepsy with focal seizures, and currently available drugs may fail to provide a thorough treatment of the patients. The present study demonstrates the utility of glucose-coated gold nanoparticles (GNPs) as selective carriers of an antiepileptic drug, lacosamide (LCM), in developing a strategy to cross the blood-brain barrier to overcome drug resistance. Intravenous administration of LCM-loaded GNPs to epileptic animals yielded significantly higher nanoparticle levels in the hippocampus compared to the nanoparticle administration to intact animals. The amplitude and frequency of EEG-waves in both ictal and interictal stages decreased significantly after LCM-GNP administration to animals with TLE, while a decrease in the number of seizures was also observed though statistically insignificant. In these animals, malondialdehyde was unaffected, and glutathione levels were lower in the hippocampus compared to sham. Ultrastructurally, LCM-GNPs were observed in the brain parenchyma after intravenous injection to animals with TLE. We conclude that glucose-coated GNPs can be efficient in transferring effective doses of LCM into the brain enabling elimination of the need to administer high doses of the drug, and hence, may represent a new approach in the treatment of drug-resistant TLE.


Assuntos
Anticonvulsivantes/administração & dosagem , Sistemas de Liberação de Medicamentos , Epilepsia do Lobo Temporal/tratamento farmacológico , Lacosamida/administração & dosagem , Nanopartículas Metálicas , Animais , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/farmacologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Ouro/química , Hipocampo/metabolismo , Injeções Intravenosas , Lacosamida/farmacocinética , Lacosamida/farmacologia , Masculino , Ratos , Ratos Wistar , Distribuição Tecidual
4.
Brain Res ; 1715: 148-155, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30914250

RESUMO

The blood-brain barrier (BBB) permeability primarily increases in cerebral venules during acute hypertension. Methyl-ß-cyclodextrin (MßCD), a cholesterol-depleting agent, decreases the expression of caveolins disrupting caveolar structures. We aimed to determine the effects of MßCD on the BBB permeability of angiotensin (ANG) II-induced hypertensive rats. Three minutes after MßCD administration (5 mg/kg), acute hypertension was induced by ANG II (60 µg/kg). Evans blue (EB) and horseradish peroxidase (HRP) tracers were used to assess BBB permeability. Immunohistochemistry for caveolin (Cav)-1 and tight junction protein claudin-5 was performed. EB dye content significantly increased in both cerebral cortices and left hippocampus in MßCD (P < 0.05), right cerebral cortex and both hippocampi in ANG II (P < 0.05; P < 0.01), and both cerebral cortices and hippocampi in MßCD plus ANG II groups compared with controls (P < 0.05; P < 0.01). A significant decrease in claudin-5 immunostaining intensity was observed in animals treated with MßCD compared with controls (P < 0.05). Cav-1 immunostaining intensity increased in ANG II group (P < 0.05). Ultrastructurally, HRP reaction products were observed in endothelial cells of the microvessels in the hippocampus region in MßCD group while the tracer was mainly localized in astrocytes and neurons in ANG II, and MßCD plus ANG II groups. The endothelial cells of the venules in the cerebral cortex of the animals in the latter experimental groups also showed an abundance of caveolar vesicles devoid of HRP reaction products. Our results revealed that MßCD did not provide overall protective effects on BBB integrity in acute hypertension and even led to BBB disruption in normotensive animals.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia , Angiotensina II/farmacologia , Animais , Astrócitos/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Caveolina 1/metabolismo , Córtex Cerebral/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Hipocampo/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Masculino , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , beta-Ciclodextrinas/metabolismo
5.
Chem Commun (Camb) ; 50(82): 12333-6, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25183463

RESUMO

Photochromic fluorescence resonance energy transfer (pcFRET) was used to monitor the redox activity of non-fluorescent heme protein. Venus fluorescent protein was used as a donor where its emission intensity was reversibly modulated by the absorption change of Cytochrome c.


Assuntos
Proteínas de Bactérias/química , Citocromos c/química , Hemeproteínas/química , Proteínas Luminescentes/química , Transferência Ressonante de Energia de Fluorescência/métodos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...