Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-38002286

RESUMO

The ability of cancer cells to detach from the primary site and metastasize is the main cause of cancer- related death among all cancer types. Epithelial-to-mesenchymal transition (EMT) is the first event of the metastatic cascade, resulting in the loss of cell-cell adhesion and the acquisition of motile and stem-like phenotypes. A critical modulator of EMT in cancer cells is the stromal tumor microenvironment (TME), which can promote the acquisition of a mesenchymal phenotype through direct interaction with cancer cells or changes to the broader microenvironment. In this review, we will explore the role of stromal cells in modulating cancer cell EMT, with particular emphasis on the function of mesenchymal stromal/stem cells (MSCs) through the activation of EMT-inducing pathways, extra cellular matrix (ECM) remodeling, immune cell alteration, and metabolic rewiring.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Matriz Extracelular/metabolismo , Transição Epitelial-Mesenquimal , Microambiente Tumoral
2.
Cancer Res ; 82(24): 4680-4693, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36219681

RESUMO

Ovarian clear cell carcinoma (OCCC) is a deadly and treatment-resistant cancer, which arises within the unique microenvironment of endometriosis. In this study, we identified a subset of endometriosis-derived mesenchymal stem cells (enMSC) characterized by loss of CD10 expression that specifically support OCCC growth. RNA sequencing identified alterations in iron export in CD10-negative enMSCs and reciprocal changes in metal transport in cocultured OCCC cells. CD10-negative enMSCs exhibited elevated expression of iron export proteins hephaestin and ferroportin and donate iron to associated OCCCs, functionally increasing the levels of labile intracellular iron. Iron is necessary for OCCC growth, and CD10-negative enMSCs prevented the growth inhibitory effects of iron chelation. In addition, enMSC-mediated increases in OCCC iron resulted in a unique sensitivity to ferroptosis. In vitro and in vivo, treatment with the ferroptosis inducer erastin resulted in significant death of cancer cells grown with CD10-negative enMSCs. Collectively, this work describes a novel mechanism of stromal-mediated tumor support via iron donation. This work also defines an important role of endometriosis-associated MSCs in supporting OCCC growth and identifies a critical therapeutic vulnerability of OCCC to ferroptosis based on stromal phenotype. SIGNIFICANCE: Endometriosis-derived mesenchymal stem cells support ovarian clear cell carcinoma via iron donation necessary for cancer growth, which also confers sensitivity to ferroptosis-inducing therapy.


Assuntos
Adenocarcinoma de Células Claras , Endometriose , Células-Tronco Mesenquimais , Neoplasias Ovarianas , Humanos , Feminino , Endometriose/metabolismo , Endometriose/patologia , Neoplasias Ovarianas/patologia , Ferro , Adenocarcinoma de Células Claras/metabolismo , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral
3.
Nat Commun ; 12(1): 3349, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099645

RESUMO

Current immunotherapy paradigms aim to reinvigorate CD8+ T cells, but the contribution of humoral immunity to antitumor immunity remains understudied. Here, we demonstrate that in head and neck squamous cell carcinoma (HNSCC) caused by human papillomavirus infection (HPV+), patients have transcriptional signatures of germinal center (GC) tumor infiltrating B cells (TIL-Bs) and spatial organization of immune cells consistent with tertiary lymphoid structures (TLS) with GCs, both of which correlate with favorable outcome. GC TIL-Bs in HPV+ HNSCC are characterized by distinct waves of gene expression consistent with dark zone, light zone and a transitional state of GC B cells. Semaphorin 4a expression is enhanced on GC TIL-Bs present in TLS of HPV+ HNSCC and during the differentiation of TIL-Bs. Our study suggests that therapeutics to enhance TIL-B responses in HNSCC should be prioritized in future studies to determine if they can complement current T cell mediated immunotherapies.


Assuntos
Linfócitos B/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Estruturas Linfoides Terciárias/metabolismo , Análise de Variância , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos/imunologia , Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Imunoterapia/métodos , Infecções por Papillomavirus , Semaforinas/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Análise de Sobrevida , Linfócitos T
4.
J Vis Exp ; (169)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33843939

RESUMO

Ovarian cancer is characterized by early, diffuse metastasis with 70% of women having metastatic disease at the time of diagnosis. While elegant transgenic mouse models of ovarian cancer exist, these mice are expensive and take a long time to develop tumors. Intraperitoneal injection xenograft models lack human stroma and do not accurately model ovarian cancer metastasis. Even patient derived xenografts (PDX) do not fully recapitulate the human stromal microenvironment as serial PDX passages demonstrate significant loss of human stroma. The ability to easily model human ovarian cancer within a physiologically relevant stromal microenvironment is an unmet need. Here, the protocol presents an orthotopic ovarian cancer mouse model using human ovarian cancer cells combined with patient-derived carcinoma-associated mesenchymal stem cells (CA-MSCs). CA-MSCs are stromal progenitor cells, which drive the formation of the stromal microenvironment and support ovarian cancer growth and metastasis. This model develops early and diffuses metastasis mimicking clinical presentation. In this model, luciferase expressing ovarian cancer cells are mixed in a 1:1 ratio with CA-MSCs and injected into the ovarian bursa of NSG mice. Tumor growth and metastasis are followed serially over time using bioluminescence imaging. The resulting tumors grow aggressively and form abdominal metastases by 14 days post injection. Mice experienced significant decreases in body weight as a marker of systemic illness and increased disease burden. By day 30 post injection, mice met endpoint criteria of >10% body weight loss and necropsy confirmed intra-abdominal metastasis in 100% of mice and 60%-80% lung and parenchymal liver metastasis. Collectively, orthotopic engraftment of ovarian cancer cells and stroma cells generates tumors that closely mimic the early and diffuse metastatic behavior of human ovarian cancer. Furthermore, this model provides a tool to study the role of ovarian cancer cell: stroma cell interactions in metastatic progression.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Neoplasias Ovarianas/patologia , Células Estromais/metabolismo , Animais , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Células Estromais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Rep ; 33(10): 108473, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296650

RESUMO

A role for cancer cell epithelial-to-mesenchymal transition (EMT) in cancer is well established. Here, we show that, in addition to cancer cell EMT, ovarian cancer cell metastasis relies on an epigenomic mesenchymal-to-epithelial transition (MET) in host mesenchymal stem cells (MSCs). These reprogrammed MSCs, termed carcinoma-associated MSCs (CA-MSCs), acquire pro-tumorigenic functions and directly bind cancer cells to serve as a metastatic driver/chaperone. Cancer cells induce this epigenomic MET characterized by enhancer-enriched DNA hypermethylation, altered chromatin accessibility, and differential histone modifications. This phenomenon appears clinically relevant, as CA-MSC MET is highly correlated with patient survival. Mechanistically, mirroring MET observed in development, MET in CA-MSCs is mediated by WT1 and EZH2. Importantly, EZH2 inhibitors, which are clinically available, significantly inhibited CA-MSC-mediated metastasis in mouse models of ovarian cancer.


Assuntos
Transição Epitelial-Mesenquimal/genética , Metástase Neoplásica/genética , Neoplasias Ovarianas/genética , Animais , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Epigenoma/genética , Epigenômica/métodos , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Cultura Primária de Células , Transdução de Sinais/genética , Proteínas WT1/genética , Proteínas WT1/metabolismo
6.
Anticancer Res ; 39(5): 2277-2287, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31092419

RESUMO

BACKGROUND: Low success rates in oncology drug development are prompting re-evaluation of preclinical models, including orthotopic tumor engraftment. In breast cancer models, tumor cells are typically injected into mouse mammary fat pads (MFP). However, this approach bypasses the epithelial microenvironment, potentially altering tumor properties in ways that affect translational application. MATERIALS AND METHODS: Tumors were generated by mammary intraductal (MIND) engraftment of 4T1 carcinoma cells. Growth, histopathology, and molecular features were quantified. RESULTS: Despite growth similar to that of 4T1 MFP tumors, 4T1 MIND tumors exhibit distinct histopathology and increased metastasis. Furthermore, >6,000 transcripts were found to be uniquely up-regulated in 4T1 MIND tumor cells, including genes that drive several cancer hallmarks, in addition to two known therapeutic targets that were not up-regulated in 4T1 MFP tumor cells. CONCLUSION: Engraftment into the epithelial microenvironment generates tumors that more closely recapitulate the complexity of malignancy, suggesting that intraductal adaptation of orthotopic mammary models may be an important step towards improving outcomes in preclinical drug screening and development.


Assuntos
Neoplasias da Mama/genética , Neoplasias Mamárias Animais/genética , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/patologia , Camundongos , Terapia de Alvo Molecular , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...