Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 27(5): e14415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712683

RESUMO

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.


Assuntos
Folhas de Planta , Ciclo do Carbono , Carbono/metabolismo
2.
Ecology ; 104(4): e3982, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36700858

RESUMO

Gradient and scale are two key concepts in ecology and evolution that are closely related but inherently distinct. While scale commonly refers to the dimensional space of a specific ecological/evolutionary (eco-evo) issue, gradient measures the range of a given variable. Gradient and scale can jointly and interactively influence eco-evo patterns. Extensive previous research investigated how changing scales may affect the observation and interpretation of eco-evo patterns; however, relatively little attention has been paid to the role of changing gradients. Here, synthesizing recent research progress, we suggest that the role of scale in the emergence of ecological patterns should be evaluated in conjunction with considering the underlying environmental gradients. This is important because, in most studies, the range of the gradient is often part of its full potential range. The difference between sampled (partial) versus potential (full) environmental gradients may profoundly impact observed eco-evo patterns and alter scale-gradient relationships. Based on observations from both field and experimental studies, we illustrate the underlying features of gradients and how they may affect observed patterns, along with the linkages of these features to scales. Since sampled gradients often do not cover their full potential ranges, we discuss how the breadth and the starting and ending positions of key gradients may affect research design and data interpretation. We then outline potential approaches and related perspectives to better integrate gradient with scale in future studies.


Assuntos
Evolução Biológica , Ecologia
3.
Ecol Appl ; 31(7): e02417, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34278647

RESUMO

Many secondary deciduous forests of eastern North America are approaching a transition in which mature early-successional trees are declining, resulting in an uncertain future for this century-long carbon (C) sink. We initiated the Forest Accelerated Succession Experiment (FASET) at the University of Michigan Biological Station to examine the patterns and mechanisms underlying forest C cycling following the stem girdling-induced mortality of >6,700 early-successional Populus spp. (aspen) and Betula papyrifera (paper birch). Meteorological flux tower-based C cycling observations from the 33-ha treatment forest have been paired with those from a nearby unmanipulated forest since 2008. Following over a decade of observations, we revisit our core hypothesis: that net ecosystem production (NEP) would increase following the transition to mid-late-successional species dominance due to increased canopy structural complexity. Supporting our hypothesis, NEP was stable, briefly declined, and then increased relative to the control in the decade following disturbance; however, increasing NEP was not associated with rising structural complexity but rather with a rapid 1-yr recovery of total leaf area index as mid-late-successional Acer, Quercus, and Pinus assumed canopy dominance. The transition to mid-late-successional species dominance improved carbon-use efficiency (CUE = NEP/gross primary production) as ecosystem respiration declined. Similar soil respiration rates in control and treatment forests, along with species differences in leaf physiology and the rising relative growth rates of mid-late-successional species in the treatment forest, suggest changes in aboveground plant respiration and growth were primarily responsible for increases in NEP. We conclude that deciduous forests transitioning from early to middle succession are capable of sustained or increased NEP, even when experiencing extensive tree mortality. This adds to mounting evidence that aging deciduous forests in the region will function as C sinks for decades to come.


Assuntos
Ecossistema , Pinus , Carbono , Florestas , Árvores
4.
Glob Chang Biol ; 26(11): 6080-6096, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32846039

RESUMO

Secondary forest regrowth shapes community succession and biogeochemistry for decades, including in the Upper Great Lakes region. Vegetation models encapsulate our understanding of forest function, and whether models can reproduce multi-decadal succession patterns is an indication of our ability to predict forest responses to future change. We test the ability of a vegetation model to simulate C cycling and community composition during 100 years of forest regrowth following stand-replacing disturbance, asking (a) Which processes and parameters are most important to accurately model Upper Midwest forest succession? (b) What is the relative importance of model structure versus parameter values to these predictions? We ran ensembles of the Ecosystem Demography model v2.2 with different representations of processes important to competition for light. We compared the magnitude of structural and parameter uncertainty and assessed which sub-model-parameter combinations best reproduced observed C fluxes and community composition. On average, our simulations underestimated observed net primary productivity (NPP) and leaf area index (LAI) after 100 years and predicted complete dominance by a single plant functional type (PFT). Out of 4,000 simulations, only nine fell within the observed range of both NPP and LAI, but these predicted unrealistically complete dominance by either early hardwood or pine PFTs. A different set of seven simulations were ecologically plausible but under-predicted observed NPP and LAI. Parameter uncertainty was large; NPP and LAI ranged from ~0% to >200% of their mean value, and any PFT could become dominant. The two parameters that contributed most to uncertainty in predicted NPP were plant-soil water conductance and growth respiration, both unobservable empirical coefficients. We conclude that (a) parameter uncertainty is more important than structural uncertainty, at least for ED-2.2 in Upper Midwest forests and (b) simulating both productivity and plant community composition accurately without physically unrealistic parameters remains challenging for demographic vegetation models.


Assuntos
Ecossistema , Florestas , Carbono/análise , Great Lakes Region , Árvores , Incerteza
5.
Ecol Lett ; 22(12): 2049-2059, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31523909

RESUMO

Vegetation canopy structure is a fundamental characteristic of terrestrial ecosystems that defines vegetation types and drives ecosystem functioning. We use the multivariate structural trait composition of vegetation canopies to classify ecosystems within a global canopy structure spectrum. Across the temperate forest sub-set of this spectrum, we assess gradients in canopy structural traits, characterise canopy structural types (CST) and evaluate drivers and functional consequences of canopy structural variation. We derive CSTs from multivariate canopy structure data, illustrating variation along three primary structural axes and resolution into six largely distinct and functionally relevant CSTs. Our results illustrate that within-ecosystem successional processes and disturbance legacies can produce variation in canopy structure similar to that associated with sub-continental variation in forest types and eco-climatic zones. The potential to classify ecosystems into CSTs based on suites of structural traits represents an important advance in understanding and modelling structure-function relationships in vegetated ecosystems.


Assuntos
Ecossistema , Árvores , Florestas , Fenótipo
6.
Ecology ; 100(10): e02864, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31397885

RESUMO

Structure-function relationships are central to many ecological paradigms. Chief among these is the linkage of net primary production (NPP) with species diversity and canopy structure. Using the National Ecological Observatory Network (NEON) as a subcontinental-scale research platform, we examined how temperate-forest NPP relates to several measures of site-level canopy structure and tree species diversity. Novel multidimensional canopy traits describing structural complexity, most notably canopy rugosity, were more strongly related to site NPP than were species diversity measures and other commonly characterized canopy structural features. The amount of variation in site-level NPP explained by canopy rugosity alone was 83%, which was substantially greater than that explained individually by vegetation area index (31%) or Shannon's index of species diversity (30%). Forests that were more structurally complex, had higher vegetation-area indices, or were more diverse absorbed more light and used light more efficiently to power biomass production, but these relationships were most strongly tied to structural complexity. Implications for ecosystem modeling and management are wide ranging, suggesting structural complexity traits are broad, mechanistically robust indicators of NPP that, in application, could improve the prediction and management of temperate forest carbon sequestration.


Assuntos
Ecossistema , Florestas , Biomassa , Sequestro de Carbono , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...