Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 66(11): e0070822, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36226972

RESUMO

Burkholderia pseudomallei is the causative agent of melioidosis and presents with diverse clinical manifestations. Naturally occurring infection occurs following contamination of cuts or skin abrasions, or ingestion of contaminated water, and occasionally through inhalational of infected soil or water particles. The influence of the route of disease acquisition on the efficacy of medical countermeasures has not been explored in humans or in appropriate animal models. The efficacy of co-trimoxazole against melioidosis acquired by different routes of exposure was assessed in postexposure prophylaxis (PEP) and treatment studies in marmoset models of melioidosis. Following challenge with B. pseudomallei by the inhalational, subcutaneous, or ingestion routes of administration, animals were given co-trimoxazole at 12 hourly intervals for 14 days, starting either 6 h postchallenge or at the onset of fever. Animals were then observed for 28 days. All animals that received antibiotic 6 h postchallenge survived the duration of dosing. All animals that received antibiotics at the onset of fever completed the treatment, but 10%, 57%, and 60% of those with ingestion, subcutaneous, and inhalation challenge relapsed, respectively. Bacteriological and histological differences were observed between placebo-control animals and those that relapsed. Immunological profiles indicate difference between animals given placebo and those that relapsed or survived the duration of the study. A broad T-cell activation was observed in animals that survived. Overall, these data suggest the efficacy of co-trimoxazole, as measured in the incidence of relapse, differs depending on the disease-acquisition route. Therefore, there are implications in treating this disease in regions of endemicity.


Assuntos
Burkholderia pseudomallei , Melioidose , Humanos , Animais , Melioidose/tratamento farmacológico , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , Antibacterianos/uso terapêutico , Água , Modelos Animais de Doenças
2.
PLoS Negl Trop Dis ; 15(2): e0009016, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617546

RESUMO

Burkholderia pseudomallei is the causative agent of melioidosis, which is a Gram negative, facultative intracellular bacterium. Disease is prevalent in SE Asia and in northern Australia, as well as in other tropical and subtropical regions. Recently, there is an increasing awareness of the importance of bacterial ingestion as a potential route of infection, particularly in cases of unexplained origin of the disease. The marmoset is a New World Monkey (NWM) species that is being developed as an alternative NHP model to complement the more traditionally used Old World Monkeys (OWM). Models have been developed for the traditional routes of disease acquisition, subcutaneous and inhalational. This manuscript details the development and characterisation of an ingestion model of melioidosis. Dose-ranging study assessed the lethality of B. pseudomallei and disease progression was assessed by euthanizing animals at predetermined time points, 12, 36, 48 and 54 hours post-challenge. Challenge doses of greater than 6.2 x 106 cfu resulted in an acute, lethal, febrile disease. Following challenge the lung was the first organ, outside of the gastrointestinal tract, to become colonised. Enteritis (duodenitis, ileitis and/or jejunitis) was observed in sections of the small intestine from animals that succumbed to disease. However, the most severe pathological features were observed in the mesenteric lymph nodes from these animals. These findings are consistent with lymphatic draining as route of dissemination.


Assuntos
Burkholderia pseudomallei/fisiologia , Sistema Linfático/microbiologia , Melioidose/patologia , Animais , Burkholderia pseudomallei/patogenicidade , Callithrix , Modelos Animais de Doenças , Enterite/microbiologia , Feminino , Pulmão/microbiologia , Linfonodos/microbiologia , Linfonodos/patologia , Masculino , Melioidose/microbiologia
3.
Front Cell Infect Microbiol ; 10: 621635, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585288

RESUMO

Common marmosets (Callithrix jacchus) were shown to be susceptible to inhalational infection with Coxiella burnetii, in a dose-dependent manner, producing a disease similar to human Q fever, characterized by a resolving febrile response. Illness was also associated with weight loss, liver enzyme dysfunction, characteristic cellular activation, circulating INF-γ and bacteraemia. Viable C. burnetii was recovered from various tissues during disease and from 75% of the animal's lungs on 28 days post challenge, when there were no overt clinical features of disease but there was histological evidence of macrophage and lymphocyte infiltration into the lung resulting in granulomatous alveolitis. Taken together, these features of disease progression, physiology and bacterial spread appear to be consistent with human disease and therefore the common marmoset can be considered as a suitable model for studies on the pathogenesis or the development of medical counter measures of inhalational Q fever.


Assuntos
Callithrix , Febre Q , Administração por Inalação , Animais , Modelos Animais de Doenças , Humanos , Febre Q/diagnóstico , Baço
4.
Front Microbiol ; 10: 1552, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379760

RESUMO

Historically, disease progression in animal models of Q fever has been carried out using PCR to monitor the presence of Coxiella burnetii DNA in the host. However, the colonization and dissemination of other bacterial infections in animal models are tracked using viable counts, enabling an accurate assessment of viable bacterial load within tissues. Following recent advances in the culture methods, it has become possible to do the same with C. burnetii. Here we compare and contrast the different information gained by using PCR or viable counts to study this disease. Viable bacteria were cleared from organs much faster than previously reported when assessed by bacterial DNA, but weight loss and clinical signs improved while animals were still heavily infected.

5.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31331957

RESUMO

Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic to Southeast Asia and northern Australia. Mortality rates in these areas are high even with antimicrobial treatment, and there are few options for effective therapy. Therefore, there is a need to identify antibacterial targets for the development of novel treatments. Cyclophilins are a family of highly conserved enzymes important in multiple cellular processes. Cyclophilins catalyze the cis-trans isomerization of xaa-proline bonds, a rate-limiting step in protein folding which has been shown to be important for bacterial virulence. B. pseudomallei carries a putative cyclophilin B gene, ppiB, the role of which was investigated. A B. pseudomalleiΔppiB (BpsΔppiB) mutant strain demonstrates impaired biofilm formation and reduced motility. Macrophage invasion and survival assays showed that although the BpsΔppiB strain retained the ability to infect macrophages, it had reduced survival and lacked the ability to spread cell to cell, indicating ppiB is essential for B. pseudomallei virulence. This is reflected in the BALB/c mouse infection model, demonstrating the requirement of ppiB for in vivo disease dissemination and progression. Proteomic analysis demonstrates that the loss of PpiB leads to pleiotropic effects, supporting the role of PpiB in maintaining proteome homeostasis. The loss of PpiB leads to decreased abundance of multiple virulence determinants, including flagellar machinery and alterations in type VI secretion system proteins. In addition, the loss of ppiB leads to increased sensitivity toward multiple antibiotics, including meropenem and doxycycline, highlighting ppiB inhibition as a promising antivirulence target to both treat B. pseudomallei infections and increase antibiotic efficacy.


Assuntos
Proteínas de Bactérias/genética , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Ciclofilinas/genética , Melioidose/microbiologia , Proteoma/genética , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/metabolismo , Linhagem Celular , Ciclofilinas/deficiência , Feminino , Deleção de Genes , Expressão Gênica , Homeostase/genética , Macrófagos/microbiologia , Melioidose/tratamento farmacológico , Melioidose/mortalidade , Melioidose/patologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana/efeitos dos fármacos , Proteoma/classificação , Proteoma/metabolismo , Análise de Sobrevida , Virulência
6.
Artigo em Inglês | MEDLINE | ID: mdl-30834386

RESUMO

We have resequenced the genomes of four Burkholderia pseudomallei K96243 laboratory cultures and compared them to the reported genome sequence that was published in 2004. Compared with the reference genome, these laboratory cultures harbored up to 42 single-nucleotide variants and up to 11 indels, including a 31.7-kb deletion in one culture.

7.
J Immunol Res ; 2018: 8087916, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622981

RESUMO

There is a requirement for an efficacious vaccine to protect people against infection from Francisella tularensis, the etiological agent of tularemia. The lipopolysaccharide (LPS) of F. tularensis is suboptimally protective against a parenteral lethal challenge in mice. To develop a more efficacious subunit vaccine, we have used a novel biosynthetic technique of protein glycan coupling technology (PGCT) that exploits bacterial N-linked glycosylation to recombinantly conjugate F. tularensis O-antigen glycans to the immunogenic carrier protein Pseudomonas aeruginosa exoprotein A (ExoA). Previously, we demonstrated that an ExoA glycoconjugate with two glycosylation sequons was capable of providing significant protection to mice against a challenge with a low-virulence strain of F. tularensis. Here, we have generated a more heavily glycosylated conjugate vaccine and evaluated its efficacy in a Fischer 344 rat model of tularemia. We demonstrate that this glycoconjugate vaccine protected rats against disease and the lethality of an inhalational challenge with F. tularensis Schu S4. Our data highlights the potential of this biosynthetic approach for the creation of next-generation tularemia subunit vaccines.


Assuntos
Vacinas Bacterianas/imunologia , Francisella tularensis/fisiologia , Glicoconjugados/imunologia , Hexosiltransferases/imunologia , Tularemia/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Inalação , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Pseudomonas aeruginosa/metabolismo , Ratos , Ratos Endogâmicos F344 , Vacinação
8.
BMC Microbiol ; 17(1): 163, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28732479

RESUMO

BACKGROUND: The World Health Organization has categorized plague as a re-emerging disease and the potential for Yersinia pestis to also be used as a bioweapon makes the identification of new drug targets against this pathogen a priority. Environmental temperature is a key signal which regulates virulence of the bacterium. The bacterium normally grows outside the human host at 28 °C. Therefore, understanding the mechanisms that the bacterium used to adapt to a mammalian host at 37 °C is central to the development of vaccines or drugs for the prevention or treatment of human disease. RESULTS: Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28 °C. When the library of mutants was subsequently cultured at 37 °C we identified 19 genes that were essential at 37 °C but not at 28 °C, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance. Using genome-scale metabolic network reconstruction we showed that growth conditions profoundly influence the physiology of the bacterium, and by combining computational and experimental approaches we were able to identify 54 genes that are essential under a broad range of conditions. CONCLUSIONS: Using an integrated computational-experimental approach we identify genes which are required for growth at 37 °C and under a broad range of environments may be the best targets for the development of new interventions to prevent or treat plague in humans.


Assuntos
Proteínas de Bactérias/genética , Biologia Computacional/métodos , Genes Essenciais , Peste/microbiologia , Yersinia pestis/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Mutação , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/metabolismo
9.
Sci Rep ; 7: 41923, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28165493

RESUMO

Massively parallel sequencing technology coupled with saturation mutagenesis has provided new and global insights into gene functions and roles. At a simplistic level, the frequency of mutations within genes can indicate the degree of essentiality. However, this approach neglects to take account of the positional significance of mutations - the function of a gene is less likely to be disrupted by a mutation close to the distal ends. Therefore, a systematic bioinformatics approach to improve the reliability of essential gene identification is desirable. We report here a parametric model which introduces a novel mutation feature together with a noise trimming approach to predict the biological significance of Tn5 mutations. We show improved performance of essential gene prediction in the bacterium Yersinia pestis, the causative agent of plague. This method would have broad applicability to other organisms and to the identification of genes which are essential for competitiveness or survival under a broad range of stresses.


Assuntos
Proteínas de Bactérias/genética , Genes Essenciais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Peste/microbiologia , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/genética , Biologia Computacional , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Fenótipo , Virulência
10.
Bioconjug Chem ; 27(6): 1435-46, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27124182

RESUMO

Melioidosis is an emerging infectious disease caused by Burkholderia pseudomallei and is associated with high morbidity and mortality rates in endemic areas. Antibiotic treatment is protracted and not always successful; even with appropriate therapy, up to 40% of individuals presenting with melioidosis in Thailand succumb to infection. In these circumstances, an effective vaccine has the potential to have a dramatic impact on both the scale and the severity of disease. Currently, no vaccines are licensed for human use. A leading vaccine candidate is the capsular polysaccharide consisting of a homopolymer of unbranched 1→3 linked 2-O-acetyl-6-deoxy-ß-d-manno-heptopyranose. Here, we present the chemical synthesis of this challenging antigen using a novel modular disaccharide assembly approach. The resulting hexasaccharide was coupled to the nontoxic Hc domain of tetanus toxin as a carrier protein to promote recruitment of T-cell help and provide a scaffold for antigen display. Mice immunized with the glycoconjugate developed IgM and IgG responses capable of recognizing native capsule, and were protected against infection with over 120 × LD50 of B. pseudomallei strain K96243. This is the first report of the chemical synthesis of an immunologically relevant and protective hexasaccharide fragment of the capsular polysaccharide of B. pseudomallei and serves as the rational starting point for the development of an effective licensed vaccine for this emerging infectious disease.


Assuntos
Glicoconjugados/química , Glicoconjugados/imunologia , Manose/química , Melioidose/prevenção & controle , Oligossacarídeos/química , Animais , Vacinas Bacterianas/química , Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Burkholderia pseudomallei/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Oligossacarídeos/síntese química
11.
Emerg Infect Dis ; 21(6)2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25992835

RESUMO

Several candidates for a vaccine against Burkholderia pseudomallei, the causal bacterium of melioidosis, have been developed, and a rational approach is now needed to select and advance candidates for testing in relevant nonhuman primate models and in human clinical trials. Development of such a vaccine was the topic of a meeting in the United Kingdom in March 2014 attended by international candidate vaccine developers, researchers, and government health officials. The focus of the meeting was advancement of vaccines for prevention of natural infection, rather than for protection from the organism's known potential for use as a biological weapon. A direct comparison of candidate vaccines in well-characterized mouse models was proposed. Knowledge gaps requiring further research were identified. Recommendations were made to accelerate the development of an effective vaccine against melioidosis.


Assuntos
Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Melioidose/prevenção & controle , Animais , Vacinas Bacterianas/economia , Financiamento de Capital , Modelos Animais de Doenças , Humanos , Melioidose/microbiologia , Melioidose/mortalidade , Camundongos
12.
PLoS One ; 10(4): e0121271, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25830295

RESUMO

Burkholderia pseudomallei is the causative agent of the severe tropical disease melioidosis, which commonly presents as sepsis. The B. pseudomallei K96243 genome encodes eleven predicted autotransporters, a diverse family of secreted and outer membrane proteins often associated with virulence. In a systematic study of these autotransporters, we constructed insertion mutants in each gene predicted to encode an autotransporter and assessed them for three pathogenesis-associated phenotypes: virulence in the BALB/c intra-peritoneal mouse melioidosis model, net intracellular replication in J774.2 murine macrophage-like cells and survival in 45% (v/v) normal human serum. From the complete repertoire of eleven autotransporter mutants, we identified eight mutants which exhibited an increase in median lethal dose of 1 to 2-log10 compared to the isogenic parent strain (bcaA, boaA, boaB, bpaA, bpaC, bpaE, bpaF and bimA). Four mutants, all demonstrating attenuation for virulence, exhibited reduced net intracellular replication in J774.2 macrophage-like cells (bimA, boaB, bpaC and bpaE). A single mutant (bpaC) was identified that exhibited significantly reduced serum survival compared to wild-type. The bpaC mutant, which demonstrated attenuation for virulence and net intracellular replication, was sensitive to complement-mediated killing via the classical and/or lectin pathway. Serum resistance was rescued by in trans complementation. Subsequently, we expressed recombinant proteins of the passenger domain of four predicted autotransporters representing each of the phenotypic groups identified: those attenuated for virulence (BcaA), those attenuated for virulence and net intracellular replication (BpaE), the BpaC mutant with defects in virulence, net intracellular replication and serum resistance and those displaying wild-type phenotypes (BatA). Only BcaA and BpaE elicited a strong IFN-γ response in a restimulation assay using whole blood from seropositive donors and were recognised by seropositive human sera from the endemic area. To conclude, several predicted autotransporters contribute to B. pseudomallei virulence and BpaC may do so by conferring resistance against complement-mediated killing.


Assuntos
Proteínas de Bactérias/genética , Burkholderia pseudomallei/patogenicidade , Sistemas de Secreção Tipo V/genética , Virulência/genética , Imunidade Adaptativa , Animais , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/genética , Linhagem Celular , Modelos Animais de Doenças , Humanos , Imunidade Celular , Lectinas/metabolismo , Melioidose/metabolismo , Melioidose/patologia , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Mutagênese , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Soro/química , Sistemas de Secreção Tipo V/metabolismo
13.
Int J Exp Pathol ; 96(6): 414-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26852689

RESUMO

The marmoset model of melioidosis was used to explore whether there was any difference in the disease presentation and/or the lesion formation following inhalational challenge with one of four strains of Burkholderia pseudomallei (K96243, 1026b, HBPUB10303a and HBPUB10134a). Marmosets were challenged with a range of bacterial doses and bacterial load, histological and physiological features were determined temporally following lethal disease. Melioidosis presented as an acute, febrile disease with bacteraemia, bacterial dissemination, necrotizing hepatitis, splenitis and pneumonia which was independent of the challenge strain. Generally, there were no major differences in the manifestation of melioidosis following challenge by the different strains of B. pseudomallei; however, there were some differences in the time to death and the severity of the pathological features. The pathological features observed in the liver and spleen of animals challenged with B. pseudomallei strain 1026b were statistically less severe (P < 0.05) and less frequent. However, more severe foci of disease were evident in the lungs of animals challenged with strain 1026b. In all cases, the lesions developed from small areas of bacteria-infected macrophages surrounded by non-infected neutrophils into large lesions with both immune cell types infected. The marmoset model was a useful tool enabling the distinction of subtle difference in the pathological response to B. pseudomallei.


Assuntos
Burkholderia pseudomallei/patogenicidade , Exposição por Inalação , Fígado/patologia , Pulmão/patologia , Melioidose/patologia , Baço/patologia , Aerossóis , Animais , Carga Bacteriana , Burkholderia pseudomallei/classificação , Callithrix , Modelos Animais de Doenças , Progressão da Doença , Feminino , Interações Hospedeiro-Patógeno , Fígado/microbiologia , Pulmão/microbiologia , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Melioidose/microbiologia , Neutrófilos/patologia , Índice de Gravidade de Doença , Baço/microbiologia , Fatores de Tempo
14.
Int J Exp Pathol ; 95(6): 378-91, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25477002

RESUMO

Glanders and melioidosis are caused by two distinct Burkholderia species and have generally been considered to have similar disease progression. While both of these pathogens are HHS/CDC Tier 1 agents, natural infection with both these pathogens is primarily through skin inoculation. The common marmoset (Callithrix jacchus) was used to compare disease following experimental subcutaneous challenge. Acute, lethal disease was observed in marmosets following challenge with between 26 and 1.2 × 10(8) cfu Burkholderia pseudomallei within 22-85 h. The reproducibility and progression of the disease were assessed following a challenge of 1 × 10(2) cfu of B. pseudomallei. Melioidosis was characterised by high levels of bacteraemia, focal microgranuloma progressing to non-necrotic multifocal solid lesions in the livers and spleens and multi-organ failure. Lethal disease was observed in 93% of animals challenged with Burkholderia mallei, occurring between 5 and 10.6 days. Following challenge with 1 × 10(2) cfu of B. mallei, glanders was characterised with lymphatic spread of the bacteria and non-necrotic, multifocal solid lesions progressing to a multifocal lesion with severe necrosis and pneumonia. The experimental results confirmed that the disease pathology and presentation is strikingly different between the two pathogens. The marmoset provides a model of the human syndrome for both diseases facilitating the development of medical countermeasures.


Assuntos
Burkholderia mallei , Burkholderia pseudomallei , Mormo/microbiologia , Mormo/patologia , Melioidose/microbiologia , Melioidose/patologia , Animais , Antígenos de Bactérias , Carga Bacteriana , Callithrix , Modelos Animais de Doenças , Feminino , Mormo/mortalidade , Injeções Subcutâneas , Masculino , Melioidose/mortalidade , Índice de Gravidade de Doença
15.
J Immunol Res ; 2014: 392170, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24892035

RESUMO

Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei. It is refractory to antibiotic treatment and there is currently no licensed vaccine. In this report we detail the construction and protective efficacy of a polysaccharide-protein conjugate composed of B. pseudomallei lipopolysaccharide and the Hc fragment of tetanus toxin. Immunisation of mice with the lipopolysaccharide-conjugate led to significantly reduced bacterial burdens in the spleen 48 hours after challenge and afforded significant protection against a lethal challenge with B. pseudomallei. The conjugate generated significantly higher levels of antigen-specific IgG1 and IgG2a than in lipopolysaccharide-immunised mice. Immunisation with the conjugate also demonstrated a bias towards Th1 type responses, evidenced by high levels of IgG2a. In contrast, immunisation with unconjugated lipopolysaccharide evoked almost no IgG2a demonstrating a bias towards Th2 type responses. This study demonstrates the effectiveness of this approach in the development of an efficacious and protective vaccine against melioidosis.


Assuntos
Anticorpos Antibacterianos/biossíntese , Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Imunoconjugados/administração & dosagem , Lipopolissacarídeos/imunologia , Melioidose/prevenção & controle , Fragmentos de Peptídeos/imunologia , Toxina Tetânica/imunologia , Animais , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/química , Feminino , Imunidade Humoral/efeitos dos fármacos , Imunização , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoglobulina G/biossíntese , Lipopolissacarídeos/química , Melioidose/imunologia , Melioidose/microbiologia , Melioidose/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Análise de Sobrevida , Toxina Tetânica/química , Equilíbrio Th1-Th2 , Vacinas Conjugadas
16.
Infect Immun ; 82(8): 3206-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24866807

RESUMO

Burkholderia pseudomallei, the etiologic agent of melioidosis, is a CDC tier 1 select agent that causes severe disease in both humans and animals. Diagnosis and treatment of melioidosis can be challenging, and in the absence of optimal chemotherapeutic intervention, acute disease is frequently fatal. Melioidosis is an emerging infectious disease for which there are currently no licensed vaccines. Due to the potential malicious use of B. pseudomallei as well as its impact on public health in regions where the disease is endemic, there is significant interest in developing vaccines for immunization against this disease. In the present study, type A O-polysaccharide (OPS) and manno-heptose capsular polysaccharide (CPS) antigens were isolated from nonpathogenic, select-agent-excluded strains of B. pseudomallei and covalently linked to carrier proteins. By using these conjugates (OPS2B1 and CPS2B1, respectively), it was shown that although high-titer IgG responses against the OPS or CPS component of the glycoconjugates could be raised in BALB/c mice, only those animals immunized with CPS2B1 were protected against intraperitoneal challenge with B. pseudomallei. Extending upon these studies, it was also demonstrated that when the mice were immunized with a combination of CPS2B1 and recombinant B. pseudomallei LolC, rather than with CPS2B1 or LolC individually, they exhibited higher survival rates when challenged with a lethal dose of B. pseudomallei. Collectively, these results suggest that CPS-based glycoconjugates are promising candidates for the development of subunit vaccines for immunization against melioidosis.


Assuntos
Antígenos de Bactérias/imunologia , Cápsulas Bacterianas/imunologia , Vacinas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Melioidose/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/administração & dosagem , Feminino , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia
18.
PLoS One ; 8(11): e79461, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223950

RESUMO

The autotransporters are a large and diverse family of bacterial secreted and outer membrane proteins, which are present in many Gram-negative bacterial pathogens and play a role in numerous environmental and virulence-associated interactions. As part of a larger systematic study on the autotransporters of Burkholderia pseudomallei, the causative agent of the severe tropical disease melioidosis, we have constructed an insertion mutant in the bpss1439 gene encoding an unstudied predicted trimeric autotransporter adhesin. The bpss1439 mutant demonstrated a significant reduction in biofilm formation at 48 hours in comparison to its parent 10276 wild-type strain. This phenotype was complemented to wild-type levels by the introduction of a full-length copy of the bpss1439 gene in trans. Examination of the wild-type and bpss1439 mutant strains under biofilm-inducing conditions by microscopy after 48 hours confirmed that the bpss1439 mutant produced less biofilm compared to wild-type. Additionally, it was observed that this phenotype was due to low levels of bacterial adhesion to the abiotic surface as well as reduced microcolony formation. In a murine melioidosis model, the bpss1439 mutant strain demonstrated a moderate attenuation for virulence compared to the wild-type strain. This attenuation was abrogated by in trans complementation, suggesting that bpss1439 plays a subtle role in the pathogenesis of B. pseudomallei. Taken together, these studies indicate that BPSS1439 is a novel predicted autotransporter involved in biofilm formation of B. pseudomallei; hence, this factor was named BbfA, Burkholderia biofilm factor A.


Assuntos
Adesinas Bacterianas/química , Biofilmes/crescimento & desenvolvimento , Burkholderia pseudomallei/fisiologia , Multimerização Proteica , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Animais , Aderência Bacteriana/genética , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/virologia , Melioidose/microbiologia , Camundongos , Mutação , Fenótipo , Estrutura Quaternária de Proteína
19.
PLoS One ; 8(9): e74789, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098670

RESUMO

Burkholderia pseudomallei is a dangerous human pathogen. Phosphoantigens specifically the target primate specific γ9(+)δ2(+) T cells subset and some have been developed as potential immunotherapeutics. Previously, we demonstrated that, when stimulated with the phosphoantigen CHDMAPP, γ9(+)δ2(+) T cells aid in the killing of intracellular B. pseudomallei bacteria. Moreover, we found that common marmoset (Callithrix Jacchus) γ9(+) T cells increase in frequency and respond to the phosphoantigen CHDMAPP and/or B. pseudomallei, in combination with IL-2, in a similar manner to human γ9(+)δ2(+) T cells. Here we evaluate the efficacy of the phosphoantigen CHDMAPP, in combination with IL-2, as a therapy against B. pseudomallei infection, in vivo. We found that the previous studies predicted the in vivo responsiveness of γ9(+) T cells to the CHDMAPP+IL-2 treatment and significant expansion of the numbers of peripheral and splenic γ9(+) T cells were observed. This effect was similar to those reported in other primate species treated with phosphoantigen. Furthermore, splenocytes were retrieved 7 days post onset of treatment, restimulated with CHDMAPP or heat-killed B. pseudomallei and the cultured γ9(+) T cells demonstrated no reduction in IFN-γ response when CHDMAPP+IL-2 animals were compared to IL-2 only treated animals. Using an established model of B. pseudomallei infection in the marmoset, we assessed the potential for using phosphoantigen as a novel immunotherapy. The CHDMAPP treatment regime had no effect on the progression of respiratory melioidosis and this was despite the presence of elevated numbers of γ9(+) T cells in the spleen, liver and lung and an increased proportion of IFN-γ(+) cells in response to infection. We therefore report that the common marmoset has proven a good model for studying the effect in vivo of γ9(+) T cell stimulation; however, γ9(+) T cells have little or no effect on the progression of lethal, respiratory B. pseudomallei infection.


Assuntos
Burkholderia pseudomallei/imunologia , Callithrix , Imunoterapia/métodos , Melioidose/veterinária , Doenças dos Macacos/tratamento farmacológico , Doenças dos Macacos/imunologia , Linfócitos T/metabolismo , Animais , Citometria de Fluxo , Interferon gama/metabolismo , Interleucina-2/imunologia , Melioidose/tratamento farmacológico , Melioidose/imunologia , Fosfoproteínas/imunologia , Fosfoproteínas/farmacologia , Fosfoproteínas/uso terapêutico
20.
Clin Vaccine Immunol ; 20(7): 1041-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23677322

RESUMO

Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei. It is highly resistant to antibiotic treatment, and there is currently no licensed vaccine. Burkholderia thailandensis is a close relative of Burkholderia pseudomallei but is essentially avirulent in mammals. In this report, we detail the protective efficacy of immunization with live B. thailandensis E555, a strain which has been shown to express an antigenic capsule similar to that of B. pseudomallei. Immunization with E555 induced significant protection against a lethal intraperitoneal B. pseudomallei challenge in a mouse model of infection, with no mice succumbing to infection over the course of the study, even with challenges of up to 6,000 median lethal doses. By comparison, mice immunized with B. thailandensis not expressing a B. pseudomallei-like capsule had significantly decreased levels of protection. E555-immunized mice had significantly higher levels of IgG than mice immunized with noncapsulated B. thailandensis, and these antibody responses were primarily directed against the capsule.


Assuntos
Vacinas Bacterianas/imunologia , Burkholderia/imunologia , Melioidose/prevenção & controle , Animais , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Vacinas Bacterianas/administração & dosagem , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...