Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Soil Ecol ; 166: None, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34602751

RESUMO

Uganda faces a considerable challenge to match its food production to an annual population growth rate of 3%. Cooking bananas are the country's most produced staple crop but the annual national harvest is not increasing. The crop grows on infertile soils that are normally fertilised organically and often susceptible to erosion. Soil nematodes are well-established as bioindicators of soil quality that can support environmental monitoring and assessment of the sustainability of agricultural systems. These invertebrates are a highly ranked indicator of biodiversity with molecular approaches available. Consequently, we have applied next-generation DNA sequencing of soil nematodes to evaluate soil quality of Ugandan banana plantations. The aim is to establish a method for constructing an aspect of an environmental biosafety dossier with the future aim of assessing the impact of transgenic crops and improving current cropping systems. The soil samples did not differ significantly in any of the measured soil chemistry factors, soil texture or percentage of organic matter. Thirty taxons of soil nematodes other than the plant parasites were recovered from soil supporting nine banana plantations plus three each from coffee and banana-coffee interplants from East and West Uganda. Cluster analysis correctly allocated each plantation to the crop/intercrop being grown when based on the abundance of taxa rather than taxa presence or absence. This indicates that the host has considerable effects on the abundance of specific nematode species within the soil. Overall, nematodes were more abundant in soil from coffee plantations than from banana-coffee interplants with the lowest values being from fields supporting just banana. Only the basal and trophic diversity indices and the percentage of nematodes that are rapid colonisers varied between the three plantation types. The soil of all fifteen plantations can be classified as having a mature soil web condition with low physical disturbance, limited chemical stressors, moderately high nutrient enrichment and balanced decomposition channels.

2.
PLoS Pathog ; 15(2): e1007503, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30707749

RESUMO

Plant parasitic nematodes must be able to locate and feed from their host in order to survive. Here we show that Pratylenchus coffeae regulates the expression of selected cell-wall degrading enzyme genes relative to the abundance of substrate in root exudates, thereby tailoring gene expression for root entry of the immediate host. The concentration of cellulose or xylan within the exudate determined the level of ß-1,4-endoglucanase (Pc-eng-1) and ß-1,4-endoxylanase (Pc-xyl) upregulation respectively. Treatment of P. coffeae with cellulose or xylan or with root exudates deficient in cellulose or xylan conferred a specific gene expression response of Pc-eng-1 or Pc-xyl respectively with no effect on expression of another cell wall degrading enzyme gene, a pectate lyase (Pc-pel). RNA interference confirmed the importance of regulating these genes as lowered transcript levels reduced root penetration by the nematode. Gene expression in this plant parasitic nematode is therefore influenced, in a host-specific manner, by cell wall components that are either secreted by the plant or released by degradation of root tissue. Transcriptional plasticity may have evolved as an adaptation for host recognition and increased root invasion by this polyphagous species.


Assuntos
Nematoides/genética , Exsudatos de Plantas/fisiologia , Animais , Celulase/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Interações Hospedeiro-Parasita/genética , Nematoides/metabolismo , Infecções por Nematoides/genética , Doenças das Plantas/genética , Exsudatos de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas , Polissacarídeo-Liases , Regulação para Cima
3.
Mol Biol Evol ; 35(10): 2401-2413, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29955862

RESUMO

Managing the emergence and spread of crop pests and pathogens is essential for global food security. Understanding how organisms have adapted to their native climate is key to predicting the impact of climate change. The potato cyst nematodes Globodera pallida and G. rostochiensis are economically important plant pathogens that cause yield losses of up to 50% in potato. The two species have different thermal optima that may relate to differences in the altitude of their regions of origin in the Andes. Here, we demonstrate that juveniles of G. pallida are less able to recover from heat stress than those of G. rostochiensis. Genome-wide analysis revealed that while both Globodera species respond to heat stress by induction of various protective heat-inducible genes, G. pallida experiences heat stress at lower temperatures. We use C. elegans as a model to demonstrate the dependence of the heat stress response on expression of Heat Shock Factor-1 (HSF-1). Moreover, we show that hsp-110 is induced by heat stress in G. rostochiensis, but not in the less thermotolerant G. pallida. Sequence analysis revealed that this gene and its promoter was duplicated in G. rostochiensis and acquired thermoregulatory properties. We show that hsp-110 is required for recovery from acute thermal stress in both C. elegans and in G. rostochiensis. Our findings point towards an underlying molecular mechanism that allows the differential expansion of one species relative to another closely related species under current climate change scenarios. Similar mechanisms may be true of other invertebrate species with pest status.


Assuntos
Mudança Climática , Duplicação Gênica , Proteínas de Choque Térmico HSP110/genética , Resposta ao Choque Térmico , Rabditídios/genética , Animais , Feminino , Proteínas de Choque Térmico HSP110/metabolismo , Temperatura Alta , Rabditídios/metabolismo , Especificidade da Espécie
4.
Phytopathology ; 108(5): 641-650, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29291356

RESUMO

Coffee yields are adversely affected by plant-parasitic nematodes and the pathogens are largely underreported because a simple and reliable identification method is not available. We describe a polymerase chain reaction-based approach to rapidly detect and quantify the major Pratylenchus and Meloidogyne nematode species that are capable of parasitizing coffee. The procedure was applied to soil samples obtained from a number of coffee farms in Brazil, Vietnam, and Indonesia to assess the prevalence of these species associated both with coffee (Coffea arabica and C. canephora) and its intercropped species Musa acuminata (banana) and Piper nigrum (black pepper). Pratylenchus coffeae and P. brachyurus were associated with coffee in all three countries but there were distinct profiles of Meloidogyne spp. Meloidogyne incognita, M. exigua, and M. paranaensis were identified in samples from Brazil and M. incognita and M. hapla were detected around the roots of coffee in Vietnam. No Meloidogyne spp. were detected in samples from Indonesia. There was a high abundance of Meloidogyne spp. in soil samples in which Pratylenchus spp. were low or not detected, suggesting that the success of one genus may deter another. Meloidogyne spp. in Vietnam and Pratylenchus spp. in Indonesia were more numerous around intercropped plants than in association with coffee. The data suggest a widespread but differential nematode problem associated with coffee production across the regions studied. The issue is compounded by the current choice of intercrops that support large nematode populations. Wider application of the approach would elucidate the true global scale of the nematode problem and the cost to coffee production. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


Assuntos
Coffea/microbiologia , Doenças das Plantas/parasitologia , Tylenchoidea/classificação , Animais , Brasil , Indonésia , Prevalência , Vietnã
5.
Plant Biotechnol J ; 16(2): 520-529, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28703405

RESUMO

Double-stranded RNA (dsRNA) molecules targeting two genes have been identified that suppress economically important parasitic nematode species of banana. Proteasomal alpha subunit 4 (pas-4) and Actin-4 (act-4) were identified from a survey of sequence databases and cloned sequences for genes conserved across four pests of banana, Radopholus similis, Pratylenchus coffeae, Meloidogyne incognita and Helicotylenchus multicinctus. These four species were targeted with dsRNAs containing exact 21 nucleotide matches to the conserved regions. Potential off-target effects were limited by comparison with Caenorhabditis, Drosophila, rat, rice and Arabidopsis genomes. In vitro act-4 dsRNA treatment of R. similis suppressed target gene expression by 2.3-fold, nematode locomotion by 66 ± 4% and nematode multiplication on carrot discs by 49 ± 5%. The best transgenic carrot hairy root lines expressing act-4 or pas-4 dsRNA reduced transcript message abundance of target genes in R. similis by 7.9-fold and fourfold and nematode multiplication by 94 ± 2% and 69 ± 3%, respectively. The same act-4 and pas-4 lines reduced P. coffeae target transcripts by 1.7- and twofold and multiplication by 50 ± 6% and 73 ± 8%. Multiplication of M. incognita on the pas-4 lines was reduced by 97 ± 1% and 99 ± 1% while target transcript abundance was suppressed 4.9- and 5.6-fold. There was no detectable RNAi effect on nontarget nematodes exposed to dsRNAs targeting parasitic nematodes. This work defines a framework for development of a range of nonprotein defences to provide broad resistance to pests and pathogens of crops.


Assuntos
Musa/parasitologia , Animais , Produtos Agrícolas/genética , Produtos Agrícolas/parasitologia , Musa/genética , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Interferência de RNA , Tylenchoidea/patogenicidade
6.
Glob Chang Biol ; 23(11): 4497-4507, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28261933

RESUMO

The potato cyst nematodes Globodera pallida and G. rostochiensis are economically important plant pathogens causing losses to UK potato harvests estimated at £50 m/ year. Implications of climate change on their future pest status have not been fully considered. Here, we report growth of female G. pallida and G. rostochiensis over the range 15 to 25°C. Females per plant and their fecundity declined progressively with temperatures above 17.5°C for G. pallida, whilst females per plant were optimal between 17.5 and 22.5°C for G. rostochiensis. Relative reproductive success with temperature was confirmed on two potato cultivars infected with either species at 15, 22.5 and 25°C. The reduced reproductive success of G. pallida at 22.5°C relative to 15°C was also recorded for a further seven host cultivars studied. The differences in optimal temperatures for reproductive success may relate to known differences in the altitude of their regions of origin in the Andes. Exposure of G. pallida to a diurnal temperature stress for one week during female growth significantly suppressed subsequent growth for one week at 17.5°C but had no effect on G. rostochiensis. However, after two weeks of recovery, female size was not significantly different from that for the control treatment. Future soil temperatures were simulated for medium- and high-emission scenarios and combined with nematode growth data to project future implications of climate change for the two species. Increased soil temperatures associated with climate change may reduce the pest status of G. pallida but benefit G. rostochiensis especially in the southern United Kingdom. We conclude that plant breeders may be able to exploit the thermal limits of G. pallida by developing potato cultivars able to grow under future warm summer conditions. Existing widely deployed resistance to G. rostochiensis is an important characteristic to retain for new potato cultivars.


Assuntos
Mudança Climática , Solanum tuberosum/parasitologia , Tylenchoidea/fisiologia , Animais , Feminino , Solo , Reino Unido
7.
J Biol Res (Thessalon) ; 23: 4, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27030819

RESUMO

BACKGROUND: Bananas and plantains (Musa spp.) provide 25 % of the food energy requirements for more than 100 million people in Africa. Plant parasitic nematodes cause severe losses to the crop due to lack of control options. The sterile nature of Musa spp. hampers conventional breeding but makes the crop suitable for genetic engineering. A constitutively expressed synthetic peptide in transgenic plantain has provided resistance against nematodes. Previous work with the peptide in potato plants indicates that targeting expression to the root tip improves the efficacy of the defence mechanism. However, a promoter that will provide root tip specific expression of transgenes in a monocot plant, such as plantain, is not currently available. Here, we report the cloning and evaluation of the maize root cap-specific protein-1 (ZmRCP-1) promoter for root tip targeted expression of transgenes that provide a defence against plant parasitic nematodes in transgenic plantain. RESULTS: Our findings indicate that the maize ZmRCP-1 promoter delivers expression of ß-glucuronidase (gusA) gene in roots but not in leaves of transgenic plantains. In mature old roots, expression of gusA gene driven by ZmRCP-1 becomes limited to the root cap. Invasion by the nematode Radopholus similis does not modify Root Cap-specific Protein-1 promoter activity. CONCLUSIONS: Root cap-specific protein-1 promoter from maize can provide targeted expression of transgene for nematode resistance in transgenic plantain.

8.
Trends Biotechnol ; 33(8): 433-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26194465

RESUMO

Future food security in sub-Saharan Africa (SSA) requires enhancement of its crop production. Transgenic crops with a poverty focus can enhance harvests and are available for staples such as cooking bananas and plantains. One constraint is optimisation of national biosafety processes to support rapid and safe uptake of such beneficial crops.


Assuntos
Agricultura/legislação & jurisprudência , Produtos Agrícolas , Plantas Geneticamente Modificadas , África , Abastecimento de Alimentos , Humanos
9.
Sci Rep ; 5: 8127, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25634654

RESUMO

Plant parasitic nematodes impose losses of up to 70% on plantains and cooking bananas in Africa. Application of nematicides is inappropriate and resistant cultivars are unavailable. Where grown, demand for plantain is more than for other staple crops. Confined field testing demonstrated that transgenic expression of a biosafe, anti-feedant cysteine proteinase inhibitor and an anti-root invasion, non-lethal synthetic peptide confers resistance to plantain against the key nematode pests Radopholus similis and Helicotylenchus multicinctus. The best peptide transgenic line showed improved agronomic performance relative to non-transgenic controls and provided about 99% nematode resistance at harvest of the mother crop. Its yield was about 186% in comparison with the nematode challenged control non-transgenic plants based on larger bunches and diminished plant toppling in storms, due to less root damage. This is strong evidence for utilizing this resistance to support the future food security of 70 million, mainly poor Africans that depend upon plantain as a staple food.


Assuntos
Resistência à Doença , Abastecimento de Alimentos , Nematoides/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Plantago/parasitologia , África , Agricultura , Animais , Análise por Conglomerados , Flores/fisiologia , Necrose , Folhas de Planta/anatomia & histologia , Raízes de Plantas/parasitologia , Plantago/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Análise de Regressão , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Transgenic Res ; 24(3): 421-32, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25398618

RESUMO

Lilium longiflorum cv. 'Nellie White' assumes a great economic importance as cut flowers, being one of the most valuable species (annual pot plants value above $20,000,000) in terms of wholesales in the US. The root lesion nematode Pratylenchus penetrans (RLN) constitutes one of the main pests for lily producers due to the significant root damage it causes. Our efforts have focused on the generation of soybean hairy roots (as a transient test model) and stable transgenic lilies overexpressing a modified rice cystatin (Oc-IΔD86) transgene and challenged with root lesion nematodes. Lily transformation was achieved by gene gun co-bombardment using both a pBluescript-based vector containing the cystatin gene and pDM307 that contains a bar gene for phosphinothricin selection. Both soybean hairy roots and lilies overexpressing the OcIΔD86 transgene exhibited enhanced resistance to RLN infection by means of nematode reduction up to 75 ± 5% on the total number of nematodes. In addition, lily plants overexpressing OcIΔD86 displayed an increase of plant mass and better growth performance in comparison to wild-type plants, thereby demonstrating an alternative strategy for increasing the yield and reducing nematode damage to this important floral crop.


Assuntos
Cistatinas/genética , Lilium/genética , Lilium/parasitologia , Tylenchoidea/patogenicidade , Animais , Regulação da Expressão Gênica de Plantas , Oryza/genética , Raízes de Plantas , Plantas Geneticamente Modificadas/parasitologia , Glycine max/genética , Glycine max/parasitologia , Transgenes
11.
Mol Plant Pathol ; 13(8): 842-51, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22435592

RESUMO

Plant parasitic nematodes impose a severe constraint on plantain and banana productivity; however, the sterile nature of many cultivars precludes conventional breeding for resistance. Transgenic plantain cv. Gonja manjaya (Musa AAB) plants, expressing a maize cystatin that inhibits nematode digestive cysteine proteinases and a synthetic peptide that disrupts nematode chemoreception, were assessed for their ability to resist nematode infection. Lines were generated that expressed each gene singly or both together in a stacked defence. Nematode challenge with a single species or a mixed population identified 10 lines with significant resistance. The best level of resistance achieved against the major pest species Radopholus similis was 84% ± 8% for the cystatin, 66% ± 14% for the peptide and 70% ± 6% for the dual defence. In the mixed population, trial resistance was also demonstrated to Helicotylenchus multicinctus. A fluorescently labelled form of the chemodisruptive peptide underwent retrograde transport along certain sensory dendrites of R. similis as required to disrupt chemoreception. The peptide was degraded after 30 min in simulated intestinal fluid or boiling water and after 1 h in nonsterile soil. In silico sequence analysis suggests that the peptide is not a mammalian antigen. This work establishes the mode of action of a novel nematode defence, develops the evidence for its safe and effective deployment against multiple nematode species and identifies transgenic plantain lines with a high level of resistance for a proposed field trial.


Assuntos
Nematoides/patogenicidade , Plantago/imunologia , Plantas Geneticamente Modificadas/imunologia , Animais , Plantago/parasitologia , Plantas Geneticamente Modificadas/parasitologia
12.
PLoS One ; 7(2): e30973, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359559

RESUMO

Current and future global crop yields depend upon soil quality to which soil organisms make an important contribution. The European Union seeks to protect European soils and their biodiversity for instance by amending its Directive on pesticide usage. This poses a challenge for control of Globodera pallida (a potato cyst nematode) for which both natural resistance and rotational control are inadequate. One approach of high potential is transgenically based resistance. This work demonstrates the potential in the field of a new transgenic trait for control of G. pallida that suppresses root invasion. It also investigates its impact and that of a second transgenic trait on the non-target soil nematode community. We establish that a peptide that disrupts chemoreception of nematodes without a lethal effect provides resistance to G. pallida in both a containment and a field trial when precisely targeted under control of a root tip-specific promoter. In addition we combine DNA barcoding and quantitative PCR to recognise nematode genera from soil samples without microscope-based observation and use the method for nematode faunal analysis. This approach establishes that the peptide and a cysteine proteinase inhibitor that offer distinct bases for transgenic plant resistance to G. pallida do so without impact on the non-target nematode soil community.


Assuntos
Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas , Solanum tuberosum/parasitologia , Animais , Inibidores de Cisteína Proteinase/farmacologia , Nematoides , Peptídeos/farmacologia , Praguicidas , Doenças das Plantas/parasitologia , Solo/normas , Tylenchoidea
13.
Curr Opin Biotechnol ; 23(2): 251-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21996368

RESUMO

Nematodes cause an estimated $118b annual losses to world crops and they are not readily controlled by pesticides or other control options. For many crops natural resistance genes are unavailable to plant breeders or progress by this approach is slow. Transgenic plants can provide nematode resistance for such crops. Two approaches have been field trialled that control a wide range of nematodes by either limiting use of their dietary protein uptake from the crop or by preventing root invasion without a direct lethality. In addition, RNA interference increasingly in tandem with genomic studies is providing a range of potential resistance traits that involve no novel protein production. Transgenic resistance can be delivered by tissue specific promoters to just root tissues where most economic nematodes invade and feed rather than the harvested yield. High efficacy and durability can be provided by stacking nematode resistance traits including any that natural resistance provides. The constraints to uptake centre on market acceptance and not the availability of appropriate biotechnology. The need to deploy nematode resistance is intensifying with loss of pesticides, an increased need to protect crop profit margins and in many developing world countries where nematodes severely damage both commodity and staple crops.


Assuntos
Produtos Agrícolas/fisiologia , Nematoides , Plantas Geneticamente Modificadas/fisiologia , Animais , Produtos Agrícolas/genética , Imunidade Inata , Praguicidas , Plantas Geneticamente Modificadas/genética , Interferência de RNA
14.
PLoS One ; 7(12): e53355, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285286

RESUMO

A digital camera fitted with a hemispherical lens was used to generate canopy leaf area index (LAI) values for a banana (Musa spp.) field trial with the aim of establishing a method for monitoring stresses on tall crop plants. The trial in Uganda consisted of two cultivars susceptible to nematodes, a plantain, Gonja manjaya and an East African Highland banana, Mbwazirume, plus a nematode resistant dessert banana, Yangambi km5. A comparative approach included adding a mixed population of Radopholus similis, Helicotylenchus multicinctus and Meloidogyne spp. to the soil around half the plants of each cultivar prior to field planting. Measurements of LAI were made fortnightly from 106 days post-planting over two successive cropping cycles. The highest mean LAI during the first cycle for Gonja manjaya was suppressed to 74.8±3.5% by the addition of nematodes, while for Mbwazirume the values were reduced to 71.1±1.9%. During the second cycle these values were 69.2±2.2% and 72.2±2.7%, respectively. Reductions in LAI values were validated as due to the biotic stress by assessing nematode numbers in roots and the necrosis they caused at each of two harvests and the relationship is described. Yield losses, including a component due to toppled plants, were 35.3% and 55.3% for Gonja manjaya and 31.4% and 55.8% for Mbwazirume, at first and second harvests respectively. Yangambi km5 showed no decrease in LAI and yield in the presence of nematodes at both harvests. LAI estimated by hemispherical photography provided a rapid basis for detecting biotic growth checks by nematodes on bananas, and demonstrated the potential of the approach for studies of growth checks to other tall crop plants caused by biotic or abiotic stresses.


Assuntos
Processamento de Imagem Assistida por Computador , Musa/crescimento & desenvolvimento , Musa/parasitologia , Nematoides , Doenças das Plantas/parasitologia , Agricultura , Animais , Musa/genética , Fotografação , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Plantago/genética , Plantago/crescimento & desenvolvimento , Plantago/parasitologia , Uganda
15.
J Agric Food Chem ; 59(14): 7882-90, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21718044

RESUMO

The effects of brassica green manures on Globodera pallida were assessed in vitro and in soil microcosms. Twelve of 22 brassica accessions significantly inhibited the motility of G. pallida infective juveniles in vitro. Green manures of selected brassicas were then incorporated into soil containing encysted eggs of G. pallida. Their effect on egg viability was estimated by quantifying nematode actin 1 mRNA by RT-qPCR. The leaf glucosinolate profiles of the plants were determined by high-performance liquid chromatography. Three Brassica juncea lines (Nemfix, Fumus, and ISCI99) containing high concentrations of 2-propenyl glucosinolate were the most effective, causing over 95% mortality of encysted eggs of G. pallida in polyethylene-covered soil. The toxic effects of green manures were greater in polyethylene-covered than in open soil. Toxicity in soil correlated with the concentration of isothiocyanate-producing glucosinolate but not total glucosinolate in green manures.


Assuntos
Brassica/química , Esterco/análise , Controle Biológico de Vetores/métodos , Doenças das Plantas/parasitologia , Extratos Vegetais/farmacologia , Solo/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/efeitos dos fármacos , Animais , Extratos Vegetais/química , Folhas de Planta/química , Proteínas de Protozoários/genética , Solo/análise , Tylenchoidea/genética
16.
PLoS One ; 6(3): e17475, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21408216

RESUMO

Cyst nematodes are a group of plant pathogens each with a defined host range that cause major losses to crops including potato, soybean and sugar beet. The infective mobile stage hatches from dormant eggs and moves a short distance through the soil to plant roots, which it then invades. A novel strategy for control has recently been proposed in which the plant is able to secrete a peptide which disorientates the infective stage and prevents invasion of the pathogen. This study provides indirect evidence to support the mechanism by which one such peptide disrupts chemosensory function in nematodes. The peptide is a disulphide-constrained 7-mer with the amino acid sequence CTTMHPRLC that binds to nicotinic acetylcholine receptors. A fluorescently tagged version of this peptide with both epifluorescent and confocal microscopy was used to demonstrate that retrograde transport occurs from an aqueous environment along bare-ending primary cilia of chemoreceptive sensilla. The peptide is transported to the cell bodies of these neurons and on to a limited number of other neurons to which they connect. It appears to be localised in both neuronal processes and organelles adjacent to nuclei of some neurons suggesting it could be transported through the Golgi apparatus. The peptide takes 2.5 h to reach the neuronal cell bodies. Comparative studies established that similar but less abundant uptake occurs for Caenorhabditis elegans along its well studied dye-filling chemoreceptive neurons. Incubation in peptide solution or root-exudate from transgenic plants that secrete the peptide disrupted normal orientation of infective cyst nematodes to host root diffusate. The peptide probably undergoes transport along the dye-filling non-cholinergic chemoreceptive neurons to their synapses where it is taken up by the interneurons to which they connect. Coordinated responses to chemoreception are disrupted when the sub-set of cholinergic interneurons secrete the peptide at synapses that have post-synaptic nicotinic acetylcholine receptors.


Assuntos
Células Quimiorreceptoras/metabolismo , Nematoides/metabolismo , Peptídeos/metabolismo , Plantas/parasitologia , Sequência de Aminoácidos , Animais , Comportamento Animal/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Células Quimiorreceptoras/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Corantes Fluorescentes/metabolismo , Dados de Sequência Molecular , Nematoides/citologia , Nematoides/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Plantas/efeitos dos fármacos
17.
Plant Biotechnol J ; 9(2): 151-61, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20602721

RESUMO

The potential of the MDK4-20 promoter of Arabidopsis thaliana to direct effective transgenic expression of a secreted nematode-repellent peptide was investigated. Its expression pattern was studied in both transgenic Arabidopsis and Solanum tuberosum (potato) plants. It directed root-specific ß-glucuronidase expression in both species that was chiefly localized to cells of the root cap. Use of the fluorescent timer protein dsRED-E5 established that the MDK4-20 promoter remains active for longer than the commonly used constitutive promoter CaMV35S in separated potato root border cells. Transgenic Arabidopsis lines that expressed the nematode-repellent peptide under the control of either AtMDK4-20 or CaMV35S reduced the establishment of the beet cyst nematode Heterodera schachtii. The best line using the AtMDK4-20 promoter displayed a level of resistance >80%, comparable to that of lines using the CaMV35S promoter. In transgenic potato plants, 94.9 ± 0.8% resistance to the potato cyst nematode Globodera pallida was achieved using the AtMDK4-20 promoter, compared with 34.4 ± 8.4% resistance displayed by a line expressing the repellent peptide from the CaMV35S promoter. These results establish the potential of the AtMDK4-20 promoter to limit expression of a repellent peptide whilst maintaining or even improving the efficacy of the cyst-nematode defence.


Assuntos
Arabidopsis/genética , Nematoides/efeitos dos fármacos , Peptídeos/genética , Controle de Pragas/métodos , Regiões Promotoras Genéticas , Solanum tuberosum/genética , Animais , Engenharia Genética , Proteínas de Fluorescência Verde/análise , Peptídeos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/parasitologia
18.
Int J Parasitol ; 40(7): 855-64, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20100489

RESUMO

Ectopically expressed double-stranded RNAs (dsRNAs) have recently been shown to suppress parasitic success of Meloidogyne spp. in plants. We have targeted two genes from the root-knot nematode Meloidogyne incognita; a dual oxidase gene implicated in the tyrosine cross-linking of the developing cuticle and a subunit of signal peptidase, a protein complex required for the processing of secreted proteins. While these genes are involved in different aspects of nematode development, the phenotypic consequences of RNA interference (RNAi) were similar with >or=50% reduction in nematode numbers in the roots and retardation of development to the egg-producing saccate females. Expression of processed dsRNA was observed, but no evidence of detectable levels of small interfering RNAs (siRNAs) was found in the transgenic plants. We show, to our knowledge for the first time, that combining expression of these dsRNAs by crossing appropriate Arabidopsis thaliana lines resulted in an additive effect that further reduced nematode numbers and developmental capacity. Combining RNAi target genes has the potential to enhance the efficacy of RNAi and may allow control of different nematode species or genera in the crop of interest.


Assuntos
Arabidopsis/parasitologia , Raízes de Plantas/parasitologia , Plantas Geneticamente Modificadas , Interferência de RNA , RNA de Helmintos/biossíntese , RNA Interferente Pequeno/biossíntese , Tylenchoidea/crescimento & desenvolvimento , Animais , Feminino , Proteínas de Helminto/antagonistas & inibidores , Proteínas de Helminto/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Doenças das Plantas/parasitologia , RNA de Helmintos/genética , RNA Interferente Pequeno/genética , Serina Endopeptidases/genética
19.
Int J Parasitol ; 39(7): 849-58, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19367833

RESUMO

Migration of plant-parasitic nematode infective larval stages through soil and invasion of roots requires perception and integration of sensory cues culminating in particular responses that lead to root penetration and parasite establishment. Components of the chemoreceptive neuronal circuitry involved in these responses are targets for control measures aimed at preventing infection. Here we report, to our knowledge, the first isolation of cyst nematode ace-2 genes encoding acetylcholinesterase (AChE). The ace-2 genes from Globodera pallida (Gp-ace-2) and Heterodera glycines (Hg-ace-2) show homology to ace-2 of Caenorhabditis elegans (Ce-ace-2). Gp-ace-2 is expressed most highly in the infective J2 stage with lowest expression in the early parasitic stages. Expression and functional analysis of the Globodera gene were carried out using the free-living nematode C. elegans in order to overcome the refractory nature of the obligate parasite G. pallida to many biological studies. Caenorhabditis elegans transformed with a GFP reporter construct under the control of the Gp-ace-2 promoter exhibited specific and restricted GFP expression in neuronal cells in the head ganglia. Gp-ACE-2 protein can functionally complement its C. elegans homologue. A chimeric construct containing the Ce-ace-2 promoter region and the Gp-ace-2 coding region and 3' untranslated region was able to restore a normal phenotype to the uncoordinated C. elegans double mutant ace-1;ace-2. This study demonstrates conservation of AChE function and expression between free-living and plant-parasitic nematode species, and highlights the utility of C. elegans as a heterologous system to study neuronal aspects of plant-parasitic nematode biology.


Assuntos
Acetilcolinesterase/genética , Caenorhabditis elegans/genética , Homologia de Sequência do Ácido Nucleico , Tylenchoidea/genética , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sequência Conservada/genética , DNA de Helmintos/genética , DNA de Helmintos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos , Genoma Helmíntico , Proteínas de Fluorescência Verde , Locomoção/fisiologia , Masculino , Dados de Sequência Molecular , Fenótipo , Regiões Promotoras Genéticas , Alinhamento de Sequência , Análise de Sequência de DNA , Solanum tuberosum/parasitologia , Tylenchoidea/enzimologia , Tylenchoidea/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...