Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363896

RESUMO

This paper presents the development of novel hybrid composites in the presence of filler particles and manufactured using a proposed new fabrication technique. The hybrid composites were fabricated using a basalt and E-glass woven fabric-reinforced epoxy resin matrix combined with graphite powder nanoparticles. Six sets of samples were fabricated using the vacuum-assisted free lamination compression molding technique. After the fabrication, wettability, mechanical properties (tensile, flexural and impact properties) and moisture properties were evaluated. Surface morphology and chemical composition of the composite samples were examined using a scanning electron microscope (SEM) and spectroscopy. The obtained results showed that the use of filler materials in hybrid composites improves the properties of hybrid composites. Basalt/E-glass hybrid composites with 10% graphite material exhibited superior mechanical properties over the other composites, with high-quality, improved adhesion and surface morphology. Thus, novel composites with the combination of exceptional properties may be integrated in the design of flexible electronics and microfluidics devices as a structural layer of the system. High flexibility and good surface tension of the designed composites makes them attractive for using the thermal imprint technique for microfluidics channel design.

2.
Polymers (Basel) ; 14(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365523

RESUMO

Modern day industries are highly focused on the development of bio-inspired hybrid natural fiber composites for lightweight biosensor chips, automobile, and microfluidic applications. In the present research, the mechanical properties and morphological characteristics of alkaline (NaOH)-treated hemp, flax, noil hemp, and noil flax fiber-reinforced ecopoxy biocomposites were investigated. The samples were fabricated by employing the hand layup technique followed by the compression molding process. A total of two sets of composites with various weight fractions were fabricated. The samples were tested for mechanical properties such as flexural strength, interlaminar shear strength, moisture absorption, and contact angle measurement. The treated fibers were analyzed by using an optical microscope and Fourier transform infrared spectrometer (FTIR). The morphological characteristics, such as porosity and fracture mechanisms, were investigated by using scanning electron microscopy and SEM-EDX spectroscopy. The results revealed that the flexural properties of hybrid composites vary from 22.62 MPa to 30.04 MPa for hemp and flax fibers and 21.86 MPa to 24.70 MPa for noil fibers, whereas in individual fiber composites, the strength varies from 17.11 MPa to 21.54 MPa for hemp and flax fibers and 15.83 MPa to 18.79 MPa for noil fibers. A similar trend was observed in interlaminar shear properties in both cases. From moisture analysis, the rate of absorption is increased with time up to 144 h and remains constant in both cases. The moisture gain was observed more in individual composites than hybrid composites in both cases. Hence, the impact of hybridization was observed clearly in both cases. Also, hybrid composites showed improved properties compared to individual fiber composites.

3.
Polymers (Basel) ; 14(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35808658

RESUMO

The impact of matrix material on the mechanical properties of natural-fiber-reinforced hybrid composites was studied by comparing their experimental, and numerical analysis results. In the present work hemp and flax fibers were used as reinforcement and epoxy resin and ecopoxy resin along with hardener were used as matrix materials. To study the influence of the matrix material, two sets of hybrid composites were fabricated by varying the matrix material. The composite samples were fabricated by using the compression-molding technique followed by a hand layup process. A total of five different composites were fabricated by varying the weight fraction of fiber material in each set based on the rule of the hybridization process. After fabrication, the mechanical properties of the composite samples were tested and morphological studies were analyzed by using SEM-EDX analysis. The flexural-test fractured specimens were analyzed by using a scanning electron microscope (SEM). In addition, theoretical analysis of the elastic properties of hybrid composites was carried out by using the Halpin-Tsai approach. The results showed that the hybrid composites had superior properties to individual fiber composites. Overall, epoxy resin matrix composites exhibited superior properties to ecopoxy matrix composites.

4.
Polymers (Basel) ; 13(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799715

RESUMO

In recent years, natural fiber reinforced polymer composites have gained much attention over synthetic fiber composites because of their many advantages such as low-cost, light in weight, non-toxic, non-abrasive, and bio-degradable properties. Many researchers have found interest in using epoxy resin for composite fabrication over other thermosetting and thermoplastic polymers due to its dimensional stability and mechanical properties. In this research work, the mechanical and moisture properties of Caryota and sisal fiber-reinforced epoxy resin hybrid composites were investigated. The main objective of these studies is to develop hybrid composites and exploit their importance over single fiber composites. The Caryota and sisal fiber reinforced epoxy resin composites were fabricated by using the hand lay-up technique. A total of five different samples (40C/0S, 25C/15S, 20C/20S, 15C/25S, 0C/40S) were developed based on the rule of hybridization. The samples were allowed for testing to evaluate their mechanical, moisture properties and the morphology was studied by using the scanning electron microscope analysis. It was observed that hybrid composites have shown improved mechanical properties over the single fiber (Individual fiber) composites. The moisture studies stated that all the composites were responded to the water absorption but single fiber composites absorbed more moisture than hybrid composites.

5.
Polymers (Basel) ; 12(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261200

RESUMO

Natural fibers have many advantages over synthetic fibers due to their lightness, low cost, biodegradability, and abundance in nature. The demand for natural fiber hybrid composites in various applications has increased recently, because of its promising mechanical properties. In this research work, the mechanical and wettability properties of reinforced natural fiber epoxy resin hybrid composites were investigated. The main aim of this research work is the fabrication of hybrid composites and exploit its importance over individual fiber composites. The composites were fabricated based on the rule of hybridization mixture (0.4 wf) of two fibers using sets of either hemp and flax or banana and pineapple, each set with 40 wt%, as well as four single fiber composites, 40 wt% each, as reinforcement and epoxy resin as matrix material. A total of two sets (hemp/flax and banana/pineapple) of hybrid composites were fabricated by using a hand layup technique. One set as 40H/0F, 25H/15F, 20H/20F, 15H/25F, 0H/40F, and the second one as 40B/0P, 25B/15P, 20B/20P, 15B/25P, 0B/40P weight fraction ratios. The fabricated composites were allowed for testing to examine its mechanical, wettability, and moisture properties. It has been observed that, in both cases, hybrid composites showed improved mechanical properties when compared to the individual fiber composites. The wettability test was carried out by using the contact angle measurement technique. All composites in both cases, hybrid or single showed contact angle less than 90°, which is associated with the composite hydrophilic surface properties. The moisture analysis stated that all the composites responded for moisture absorption up to 96 h and then remained constant in both cases. Hybrid composites absorbed less moisture than individual fiber composites.

6.
Polymers (Basel) ; 12(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937898

RESUMO

The present review article provides an overview of the properties of various natural and synthetic fibers for the fabrication of pure natural composites and the combination of both natural/synthetic fibers-based hybrid composites, bio-based resins, various fabrication techniques, chemical and mechanical properties of fibers, the effect of chemical treatment and the influence of nanoparticles on the composite materials. Natural fibers are becoming more popular and attractive to researchers, with satisfactory results, due to their availability, ease of fabrication, cost-effectiveness, biodegradable nature and being environmentally friendly. Hybrid composites made up of two different natural fibers under the same matrix material are more popular than a combination of natural and synthetic fibers. Recent studies relevant to natural fiber hybrid composites have stated that, due to their biodegradability and the strength of individual fibers causing an impact on mechanical properties, flame retardancy and moisture absorption, natural fibers need an additional treatment like chemical treatment for the fibers to overcome those drawbacks and to enhance their better properties. The result of chemical treatment on composite material properties such as thermal, mechanical and moisture properties was studied. Researchers found that the positive influence on overall strength by placing the filler materials (nanoparticles) in the composite materials. Hybrid composites are one of the fields in polymer science that are attracting consideration for various lightweight applications in a wide range of industries such as automobile, construction, shipping, aviation, sports equipment, electronics, hardware and biomedical sectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...