Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; (15): 2288-96, 2004 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-15278120

RESUMO

The oxidation of d-galacturonic acid by Cr(VI) yields the aldaric acid and Cr(III) as final products when a 30-times or higher excess of the uronic acid over Cr(VI) is used. The redox reaction involves the formation of intermediate Cr(IV) and Cr(V) species, with Cr(VI) and the two intermediate species reacting with galacturonic acid at comparable rates. The rate of disappearance of Cr(VI), Cr(IV) and Cr(V) depends on pH and [substrate], and the slow reaction step of the Cr(VI) to Cr(III) conversion depends on the reaction conditions. The EPR spectra show that five-coordinate oxo-Cr(V) bischelates are formed at pH < or = 5 with the uronic acid bound to Cr(V) through the carboxylate and the alpha-OH group of the furanose form or the ring oxygen of the pyranose form. Six-coordinated oxo-Cr(V) monochelates are observed as minor species in addition to the major five-coordinated oxo-Cr(V) bischelates only for galacturonic acid : Cr(VI) < or =10 : 1, in 0.25-0.50 M HClO(4). At pH 7.5 the EPR spectra show the formation of a Cr(V) complex where the vic-diol groups of Galur participate in the bonding to Cr(V). At pH 3-5 the Galur-Cr(V) species grow and decay over short periods in a similar way to that observed for [Cr(O)(alpha-hydroxy acid)(2)](-). The lack of chelation at any vic-diolate group of Galur when pH < or = 5 differentiates its ability to stabilise Cr(V) from that of neutral saccharides that form very stable oxo-Cr(V)(diolato)(2) species at pH > 1.


Assuntos
Cromo/química , Ácidos Hexurônicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Ésteres/química , Cinética , Estrutura Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA