Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 69(6): 2580-2591, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34967474

RESUMO

The investigation of a plant glycosylated serine protease (EuRP-61) isolated from Euphorbia resinifera latex for potential antiplatelet and anticoagulation activities has been previously reported. In the present study, the protein sequence and native crystal structure of EuRP-61 were characterized. The structure was identified using single-wavelength anomalous diffraction with a refinement resolution of 1.7 Å (PDB ID: 7EOX). The main structural components of EuRP-61 were composed of three domains: catalytic, protease-associated (PA), and fibronectin type III (Fn3)-like domains. The crystal structure revealed that some loops in the PA and catalytic domains of EuRP-61 were different from the other subtilisin-like proteases (cucumisin and SBT3). These different loops might be involved in the general monomer formation of EuRP-61, substrate specificity, and maintenance of the catalytic domain. The Fn3-like domain may provide flexibility to the enzyme to bind with various substrates and cell receptors. Additionally, the active site of EuRP-61 consisted of the catalytic triad of Ser434, His106, and Asp32, similar to other serine proteases. The present study provides additional information and insight into the protease and antithrombotic activities of EuRP-61, which could contribute to further development of this enzyme for biomedical treatment.


Assuntos
Euphorbia , Látex/química , Serina Proteases/química , Sequência de Aminoácidos , Análise de Sequência
2.
J Gen Virol ; 102(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34106826

RESUMO

White spot syndrome virus (WSSV) is the most virulent pathogen causing high mortality and economic loss in shrimp aquaculture and various crustaceans. Therefore, the understanding of molecular mechanisms of WSSV infection is important to develop effective therapeutics to control the spread of this viral disease. In a previous study, we found that VP37 could bind with shrimp haemocytes through the interaction between its C-terminal domain and heparin-like molecules on the shrimp cells, and this interaction can also be inhibited by sulphated galactan. In this study, we present the crystal structure of C-terminal domain of VP37 from WSSV at a resolution of 2.51 Å. The crystal structure contains an eight-stranded ß-barrel fold with an antiparallel arrangement and reveals a trimeric assembly. Moreover, there are two sulphate binding sites found in the position corresponding to R213 and K257. In order to determine whether these sulphate binding sites are involved in binding of VP37 to heparin, mutagenesis was performed to replace these residues with alanine (R213A and K257A), and the Surface Plasmon Resonance (SPR) system was used to study the interaction of each mutated VP37 with heparin. The results showed that mutants R213A and K257A exhibited a significant loss in heparin binding activity. These findings indicated that the sites of R213 and K257 on the C-terminal domain of envelope protein VP37 are essential for binding to sulphate molecules of heparin. This study provides further insight into the structure of C-terminal domain of VP37 and it is anticipated that the structure of VP37 might be used as a guideline for development of antivirus agent targeting on the VP37 protein.


Assuntos
Heparina/metabolismo , Sulfatos/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Vírus da Síndrome da Mancha Branca 1/química , Substituição de Aminoácidos , Animais , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Penaeidae/virologia , Ligação Proteica , Conformação Proteica , Conformação Proteica em Folha beta , Domínios Proteicos , Estrutura Quaternária de Proteína , Ressonância de Plasmônio de Superfície , Proteínas do Envelope Viral/genética , Vírus da Síndrome da Mancha Branca 1/genética
3.
Int J Biol Macromol ; 145: 998-1007, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31678105

RESUMO

A serine protease designated as EuRP-61 was purified from Euphorbia resinifera latex. The N-terminal sequence of 15 amino acids of EuRP-61 supported the conclusion that the enzyme was a serine protease because its amino acid sequence had homology (between 50 and 70% identities) with the subtilisin-like proteases of other plants. EuRP-61 had a molecular weight estimated at 61 kDa analyzed by MALDI-TOF MS. The enzyme could cleave human fibrinogen with optimal conditions at pH 5.0 and 45 °C. The enzyme had a broad range of pH stability from 1 to 14 and tolerance to denaturation up to a temperature of approximately 65-66 °C. EuRP-61 hydrolyzed fibrinogen with a Michaelis constant (Km) of 4.95 ±â€¯0.1 µM; a maximal velocity (Vmax) of 578.1 ±â€¯11.81 ng min-1; and a catalytic efficiency (Vmax/Km) of 116.8 ±â€¯1 ng µM-1 min-1. EuRP-61was crystallized under the condition of sodium iodide (0.2 M), Bis-Tris propane (0.1 M, pH 8.5) and PEG3350 (20%) by the sitting-drop method. The crystal belonged to space group P212121, with unit cell dimension a = 109.91, b = 67.38 and c = 199.45 Šand diffracted X-ray to 2.53 Šresolution. The crystal structure of EuRP-61 will be explored further by special phase solving techniques.


Assuntos
Euphorbia/química , Euphorbia/enzimologia , Látex/química , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , Estabilidade Enzimática , Fibrinogênio/metabolismo , Fibrinolíticos/química , Glicoproteínas/isolamento & purificação , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Peso Molecular , Análise de Sequência de Proteína , Homologia de Sequência , Serina Endopeptidases/química , Serina Proteases/química , Especificidade por Substrato , Temperatura , Oligoelementos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...