Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37588000

RESUMO

The magnetic ground state of the pyrochlore Yb2GaSbO7 has remained an enigma for nearly a decade. The persistent spin fluctuations observed by muon spin relaxation measurements at low temperatures have not been adequately explained for this material using existing theories for quantum magnetism. Here we report on the synthesis and characterisation of Yb2GaSbO7 to elucidate the central physics at play. Through DC and AC magnetic susceptibility, heat capacity, and neutron scattering experiments, we observe evidence for a dynamical ground state that makes Yb2GaSbO7 a promising candidate for disorder-induced spin-liquid or spin-singlet behaviour. This state is quite fragile, being tuned to a splayed ferromagnet in a modest magnetic field µ0Hc∼1.5T.

2.
J Phys Condens Matter ; 32(37): 374011, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32554874

RESUMO

Motivated by the presence of an unquenched orbital angular momentum in CoO, a team at Chalk River, including a recently hired research officer Roger Cowley, performed the first inelastic neutron scattering experiments on the classic Mott insulator [Sakurai et al 1968 Phys. Rev. 167 510]. Despite identifying two magnon modes at the zone boundary, the team was unable to parameterise the low energy magnetic excitation spectrum below T N using conventional pseudo-bosonic approaches, instead achieving only qualitative agreement. It would not be for another 40 years that Roger, now at Oxford and motivated by the discovery of the high-T c cuprate superconductors [Bednorz and Muller 1986 Z. Phys. B 64 189], would make another attempt at the parameterisation of the magnetic excitation spectrum that had previously alluded him at the start of his career. Upon his return to CoO, Roger found a system embroiled in controversy, with some of its most fundamental parameters still remaining undetermined. Faced with such a formidable task, Roger performed a series of inelastic neutron scattering experiments in the early 2010s on both CoO and a magnetically dilute structural analogue Mg0.97Co0.03O. These experiments would prove instrumental in the determination of both single-ion [Cowley et al 2013 Phys. Rev. B 88 205117] and cooperative magnetic parameters [Sarte et al 2018 Phys. Rev. B 98 024415] for CoO. Both these sets of parameters would eventually be used in a spin-orbit exciton model [Sarte et al 2019 Phys. Rev. B 100 075143], developed by his longtime friend and collaborator Bill Buyers, to successfully parameterise the complex spectrum that both measured at Chalk River almost 50 years prior. The story of CoO is of one that has come full circle, one filled with both spectacular failures and intermittent, yet profound, little victories.

3.
Nat Commun ; 11(1): 1671, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245968

RESUMO

Charge ordering creates a spontaneous array of differently charged ions and is associated with electronic phenomena such as superconductivity, colossal magnetoresistances (CMR), and multiferroicity. Charge orders are usually suppressed by chemical doping and site selective doping of a charge ordered array has not previously been demonstrated. Here we show that selective oxidation of one out of eight distinct Fe2+ sites occurs within the complex Fe2+/Fe3+ ordered structure of 2%-doped magnetite (Fe3O4), while the rest of the charge and orbitally ordered network remains intact. This 'charge order within a charge order' is attributed to the relative instability of the trimeron distortion surrounding the selected site. Our discovery suggests that similar complex charge ordered arrays could be used to provide surface sites for selective redox reactions, or for storing information by doping specific sites.

4.
J Mater Chem C Mater ; 6(13): 3271-3275, 2018 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30009028

RESUMO

The recently-discovered high pressure material MnFe3O5 displays a rich variety of magnetically ordered states on cooling. Fe spins order antiferromagnetically below a Néel transition at 350 K. A second transition at 150 K marks Mn spin order that leads to spin canting of some of the Fe spins and ferrimagnetism. A further transition at 60 K is driven by charge ordering of Fe2+ and Fe3+ over two inequivalent Fe sites, with further canting of all spins. Electrical resistivity measurements reveal semiconducting behaviour in MnFe3O5 with a change in activation energy at 285 K.

5.
J Phys Condens Matter ; 29(45): 45LT01, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29049030

RESUMO

Magnetic monopoles are hypothesised elementary particles connected by Dirac strings that behave like infinitely thin solenoids (Dirac 1931 Proc. R. Soc. A 133 60). Despite decades of searching, free magnetic monopoles and their Dirac strings have eluded experimental detection, although there is substantial evidence for deconfined magnetic monopole quasiparticles in spin ice materials (Castelnovo et al 2008 Nature 326 411). Here we report the detection of a hierarchy of unequally-spaced magnetic excitations via high resolution inelastic neutron spectroscopic measurements on the quantum spin ice candidate [Formula: see text] [Formula: see text] [Formula: see text]. These excitations are well-described by a simple model of monopole pairs bound by a linear potential (Coldea et al Science 327 177) with an effective tension of 0.642(8) K [Formula: see text] at 1.65 K. The success of the linear potential model suggests that these low energy magnetic excitations are direct spectroscopic evidence for the confinement of magnetic monopole quasiparticles in the quantum spin ice candidate [Formula: see text] [Formula: see text] [Formula: see text].

6.
Chem Commun (Camb) ; 52(32): 5558-60, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27020960

RESUMO

The new double perovskite Mn2MnReO6 has been synthesised at high pressure. Mn(2+) and Re(6+) spins order antiferromagnetically through two successive transitions that are coupled by magnetoelastic effects, as order of the Mn spins at 109 K leads to lattice distortions that reduce frustration prompting Re order at 99 K.

7.
Chem Commun (Camb) ; 52(27): 4864-7, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26908195

RESUMO

A remarkably complex electronic order of Fe(2+)/Fe(3+) charges, Fe(2+) orbital states, and weakly metal-metal bonded Fe3 units known as trimerons, was recently discovered in stoichiometric magnetite (Fe3O4) below the 125 K Verwey transition. Here, the low temperature crystal structure of a natural magnetite from a mineral sample has been determined using the same microcrystal synchrotron X-ray diffraction method. Structure refinement demonstrates that the natural sample has the same complex electronic order as pure synthetic magnetite, with only minor reductions of orbital and trimeron distortions. Chemical analysis shows that the natural sample contains dopants such as Al, Si, Mg and Mn at comparable concentrations to extraterrestrial magnetites, for example, as reported in the Tagish Lake meteorite. Much extraterrestrial magnetite exists at temperatures below the Verwey transition and hence our study demonstrates that the low temperature phase of magnetite represents the most complex long-range electronic order known to occur naturally.


Assuntos
Óxido Ferroso-Férrico/química , Conformação Molecular
8.
Dalton Trans ; 44(47): 20441-8, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26511286

RESUMO

Two new cation-ordered polymorphs of Mn2ScSbO6 have been synthesised at high-pressure. At 5.5 GPa and 1523 K Mn2ScSbO6 crystallizes in the Ni3TeO6-type structure with the polar R3 space group and cell parameters a = 5.3419 (5) Å and c = 14.0603 (2) Å. Below TC = 42.0 K it exhibits ferrimagnetic order with a net magnetization of 0.6µB arising from unusual site-selective Mn/Sc disorder and is thus a potential multiferroic material. A double perovskite phase obtained at 12 GPa and 1473 K crystallizes in the non-polar P21/n monoclinic space group with cell parameters a = 5.2909 (3) Å, b = 5.4698 (3) Å, c = 7.7349 (5) Å and ß = 90.165 (6) °. Magnetization and neutron diffraction experiments reveal antiferromagnetic order below TN = 22.3 K with the spins lying in the ac plane.

9.
Chem Commun (Camb) ; 51(57): 11359-61, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26036215

RESUMO

Gentle oxidation of lithium titanate spinel (LiTi2O4) with water at room temperature gives Li-deficient Li0.33Ti2O4. Combined X-ray and neutron Rietveld analysis shows that 28% of the Ti cations are displaced to alternative octahedral sites, in keeping with a proposed model based on Ti-migration limited by Li-vacancy concentration.

10.
Artigo em Inglês | MEDLINE | ID: mdl-25643712

RESUMO

We report on the synthesis, crystal structure and magnetic properties of a previously unreported Co(2+) S = 3/2 compound, (C4H12N2)[CoCl4], based upon a tetrahedral crystalline environment. The S = 3/2 magnetic ground state of Co(2+), measured with magnetization, implies an absence of spin-orbit coupling and orbital degeneracy. This contrasts with compounds based upon an octahedral and even known tetrahedral Co(2+) [Cotton et al. (1961). J. Am. Chem. Soc. 83, 4690] systems where a sizable spin-orbit coupling is measured. The compound is characterized with single-crystal X-ray diffraction, magnetic susceptibility, IR and UV-vis spectroscopy. Magnetic susceptibility measurements find no magnetic ordering above 2 K. The results are also compared with the previously known monoclinic hydrated analogue.

11.
Phys Rev Lett ; 113(11): 117201, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25260001

RESUMO

We present new magnetic heat capacity and neutron scattering results for two magnetically frustrated molybdate pyrochlores: S=1 oxide Lu_{2}Mo_{2}O_{7} and S=1/2 oxynitride Lu_{2}Mo_{2}O_{5}N_{2}. Lu_{2}Mo_{2}O_{7} undergoes a transition to an unconventional spin glass ground state at T_{f}∼16 K. However, the preparation of the corresponding oxynitride tunes the nature of the ground state from spin glass to quantum spin liquid. The comparison of the static and dynamic spin correlations within the oxide and oxynitride phases presented here reveals the crucial role played by quantum fluctuations in the selection of a ground state. Furthermore, we estimate an upper limit for a gap in the spin excitation spectrum of the quantum spin liquid state of the oxynitride of Δ∼0.05 meV or Δ/|θ|∼0.004, in units of its antiferromagnetic Weiss constant θ∼-121 K.

12.
Phys Rev Lett ; 113(26): 267205, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615381

RESUMO

After nearly 20 years of study, the origin of the spin-liquid state in Tb2Ti2O7 remains a challenge for experimentalists and theorists alike. To improve our understanding of the exotic magnetism in Tb2Ti2O7, we synthesize a chemical pressure analog: Tb2Ge2O7. Substitution of titanium by germanium results in a lattice contraction and enhanced exchange interactions. We characterize the magnetic ground state of Tb2Ge2O7 with specific heat, ac and dc magnetic susceptibility, and polarized neutron scattering measurements. Akin to Tb2Ti2O7, there is no long-range order in Tb2Ge2O7 down to 20 mK. The Weiss temperature of -19.2(1) K, which is more negative than that of Tb2Ti2O7, supports the picture of stronger antiferromagnetic exchange. Polarized neutron scattering of Tb2Ge2O7 reveals that liquidlike correlations dominate in this system at 3.5 K. However, below 1 K, the liquidlike correlations give way to intense short-range ferromagnetic correlations with a length scale similar to the Tb-Tb nearest neighbor distance. Despite stronger antiferromagnetic exchange, the ground state of Tb2Ge2O7 has ferromagnetic character, in stark contrast to the pressure-induced antiferromagnetic order observed in Tb2Ti2O7.

13.
Phys Rev Lett ; 110(20): 207208, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167449

RESUMO

The vanadium oxyfluoride [NH(4)](2)[C(7)H(14)N][V(7)O(6)F(18)] (DQVOF) is a geometrically frustrated magnetic bilayer material. The structure consists of S = 1/2 kagome planes of V(4+) d(1) ions with S = 1 V(3+) d(2) ions located between the kagome layers. Muon spin relaxation measurements demonstrate the absence of spin freezing down to 40 mK despite an energy scale of 60 K for antiferromagnetic exchange interactions. From magnetization and heat capacity measurements we conclude that the S = 1 spins of the interplane V(3+) ions are weakly coupled to the kagome layers, such that DQVOF can be viewed as an experimental model for S = 1/2 kagome physics, and that it displays a gapless spin liquid ground state.

14.
J Phys Condens Matter ; 23(36): 365704, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21865639

RESUMO

Zero field muon spin relaxation (ZF-µSR) has been used to study the magnetic properties of the underdoped giant magnetoresistive ruthenocuprates RuSr(2)Nd(1.8-x)Y (0.2)Ce(x)Cu(2)O(10-δ) (x = 0.95, 0.80). The magnetoresistance (MR) is defined so that MR = ((ρ(H)-ρ(0))/ρ(0)) and the giant magnetoresistive ruthenocuprates RuSr(2)Nd(1.8-x)Y(0.2)Ce(x)Cu(2)O(10-δ) exhibit a large reduction in electronic resistivity upon application of a magnetic field. The ZF-µSR results show a gradual loss of initial asymmetry A(0) at the ruthenium spin transition temperature, T(Ru). At the same time the electronic relaxation rate, λ, shows a gradual increase with decreasing temperature below T(Ru). These results have been interpreted as evidence for Cu spin cluster formation below T(Ru). These magnetically ordered clusters grow as the temperature is decreased thus causing the initial asymmetry to decrease slowly. Giant magnetoresistance is observed over a wide temperature range in the materials studied and the magnitude increases as the temperature is reduced from T(Ru) to 4 K which suggests a relation between Cu spin cluster size and |-MR|.

15.
Chem Asian J ; 4(6): 969-973, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19378297

RESUMO

The structures and properties of Ba(0.7)Sr(0.3)Ru(1-x)Mn(x)O(3) perovskites have been investigated in samples prepared at 1300 degrees C in air. Two polytypes are found, a 6H phase for 0.2 < or = x < or = 0.4 and a 4H type for 0.6 < or = x < or = 1. The cell parameters and volume vary linearly in both solid solution ranges. Spin-freezing transitions up to 60 K are observed for the 6H samples, but the 4H materials show high temperature Néel transitions at 210 to 280 K.

16.
Chem Commun (Camb) ; (22): 2273-4, 2007 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-17534514

RESUMO

An unexpected enhancement of the large negative magnetoresistance (MR) observed in RuSr(2)Nd(0.95)Y(0.15)Ce(0.9)Cu(2)O(10-delta) up to -47% at 4 K and 9 T is evidenced upon dilution of the Ru magnetic order by substitution of Ta for Ru; this enhancement of -MR scales with the cell volume.

18.
Nature ; 436(7052): 829-32, 2005 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16094364

RESUMO

The mechanism of high-transition-temperature (high-T(c)) superconductivity in doped copper oxides is an enduring problem. Antiferromagnetism is established as the competing order, but the relationship between the two states in the intervening 'pseudogap' regime has become a central puzzle. The role of the crystal lattice, which is important in conventional superconductors, also remains unclear. Here we report an anomalous increase of the distance between copper oxide planes on cooling, which results in negative thermal volume expansion, for layered ruthenium copper oxides that have been doped to the boundary of antiferromagnetism and superconductivity. We propose that a crossover between these states is driven by spin ordering in the ruthenium oxide layers, revealing a novel mechanism for negative lattice expansion in solids. The differences in volume and lattice strain between the distinct superconducting and antiferromagnetic states can account for the phase segregation phenomena found extensively in low-doped copper oxides, and show that Cooper pair formation is coupled to the lattice. Unusually large variations of resistivity with magnetic field are found in these ruthenium copper oxides at low temperatures through coupling between the ordered Ru and Cu spins.

19.
Phys Rev Lett ; 94(9): 097202, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15783995

RESUMO

Modulations in manganites attributed to stripes of charge/orbital/spin order are thought to result from strong electron-lattice interactions that lock the superlattice and parent lattice periodicities. Surprisingly in La1-xCaxMnO3 (x>0.5,90 K), convergent beam (3.6 nm spot) electron diffraction patterns rule out charge stacking faults and indicate a superlattice with uniform periodicity. Moreover, large area electron diffraction peaks are sharper than simulations with stacking faults. Since the electron-lattice coupling does not lock the two periodicities (to yield stripes) it may be too weak to strongly localize charge.

20.
Phys Rev Lett ; 90(8): 087201, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12633454

RESUMO

Layered borocarbides RB2C (R=Dy, Ho, and Er) have been studied by powder neutron diffraction at 2-30 K. ErB2C has two-sublattice antiferromagnetic order below T(N)=16.3 K, but DyB2C and HoB2C show a coexistence of a conventional canted k=(000) ferromagnetic structure and unconventional magnetic correlations. The k=(000) phase orders at T(c)=8.5 K (DyB2C) and 7.1 K (HoB2C), but low-Q diffraction peaks from the unconventional correlations appear above T(c) with different critical temperatures for different peaks: at 8, 10.5, and 15.7 K for HoB2C. This scattering is fitted as diffraction from a Warren-type random magnetic layer lattice and may result from quadrupolar interactions between R3+ spins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...