Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Commun Chem ; 7(1): 34, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365971

RESUMO

Network theory has fundamentally transformed our comprehension of complex systems, catalyzing significant advances across various domains of science and technology. In spectroscopic networks, hubs are the quantum states involved in the largest number of transitions. Here, utilizing network paths probed via precision metrology, absolute energies have been deduced, with at least 10-digit accuracy, for almost 200 hubs in the experimental spectroscopic networks of H216O and H218O. These hubs, lying on the ground vibrational states of both species and the bending fundamental of H216O, are involved in tens of thousands of observed transitions. Relying on the same hubs and other states, benchmark-quality line lists have been assembled, which supersede and improve, by three orders of magnitude, the accuracy of the massive amount of data reported in hundreds of papers dealing with Doppler-limited spectroscopy. Due to the omnipresence of water, these ultraprecise line lists could be applied to calibrate high-resolution spectra and serve ongoing and upcoming space missions.

2.
Sci Rep ; 14(1): 794, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191619

RESUMO

Transition wavenumbers contained in line-by-line rovibronic databases can be compromised by errors of various nature. When left undetected, these errors may result in incorrect quantum-state energies, potentially compromising a large number of derived spectroscopic data. Spectroscopic networks treat the complete set of line-by-line spectroscopic data as a large graph, and through a least-squares refinement the measured line positions are converted into empirical quantum-state energies. Spectroscopic networks also offer a highly useful framework to develop mathematical tools helping to identify possible errors and conflicts within the dataset. For example, wavenumber errors can be detected by checking for violations of the law of energy conservation. This paper describes a new graph-theory tool, which results in so-called verification labels for the quantum states. Verification labels help to express the vulnerability of a calculated empirical energy value and its uncertainty against possible wavenumber errors, providing complementary information to simple statistical uncertainties.

3.
Colloids Surf B Biointerfaces ; 234: 113751, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38241889

RESUMO

Most of the malignancies detected within the brain parenchyma are of metastatic origin. As the brain lacks classical lymphatic circulation, the primary way for metastasis relies on hematogenous routes. Dissemination of metastatic cells to the brain implies attachment to the luminal surface of brain endothelial cells, transmigration through the vessel wall, and adhesion to the brain surface of the vasculature. During this process, tumor cells must interact with brain endothelial cells and later on with pericytes. Physical interaction between tumor cells and brain vascular cells might be crucial in the successful extravasation of metastatic cells through blood vessels and later in their survival within the brain environment. Therefore, we applied single-cell force spectroscopy to investigate the nanoscale adhesive properties of living breast adenocarcinoma cells to brain endothelial cells and pericytes. We found target cell type-dependent adhesion characteristics, i.e. increased adhesion of the tumor cells to pericytes in comparison to endothelial cells, which underlines the existence of metastatic potential-related nanomechanical differences relying partly on membrane tether dynamics. Varying adhesion strength of the tumor cells to different cell types of brain vessels presumably reflects the transitory adhesion to endothelial cells before extravasation and the long-lasting strong interaction with pericytes during survival and proliferation in the brain. Our results highlight the importance of specific mechanical interactions between tumor cells and host cells during metastasis formation.


Assuntos
Adenocarcinoma , Células Endoteliais , Humanos , Pericitos , Encéfalo/patologia , Endotélio , Adenocarcinoma/metabolismo
4.
J Comput Chem ; 45(13): 969-984, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38189163

RESUMO

A set of empirical rovibrational energy levels, obtained through the MARVEL (measured active rotational-vibrational energy levels) procedure, is presented for the 13 C 16 O 2 isotopologue of carbon dioxide. This procedure begins with the collection and analysis of experimental rovibrational transitions from the literature, allowing for a comprehensive review of the literature on the high-resolution spectroscopy of 13 C 16 O 2 , which is also presented. A total of 60 sources out of more than 750 checked provided 14,101 uniquely measured and assigned rovibrational transitions in the wavenumber range of 579-13,735 cm - 1 . This is followed by a weighted least-squares refinement yielding the energy levels of the states involved in the measured transitions. Altogether 6318 empirical rovibrational energies have been determined for 13 C 16 O 2 . Finally, estimates have been given for the uncertainties of the empirical energies, based on the experimental uncertainties of the transitions. The detailed analysis of the lines and the spectroscopic network built from them, as well as the uncertainty estimates, all serve to pinpoint possible errors in the experimental data, such as typos, misassignment of quantum numbers, and misidentifications. Errors found in the literature data were corrected before including them in the final MARVEL dataset and analysis.

5.
Chemphyschem ; 25(1): e202300467, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916391

RESUMO

This computational study of line-broadening effects is based on an accurate, analytical representation of the intermonomer potential energy surface (PES) of the CO2 ⋅ Ar van der Waals (vdW) complex. The PES is employed to compute collisional broadening coefficients for rovibrational lines of CO2 perturbed by Ar. The semiclassical computations are performed using the modified Robert-Bonamy approach, including real and imaginary terms, and the exact trajectory model. The lines investigated are in the 10001←00011, 01101←00001, 00011←00001, and 00031←00001 vibrational bands and the computations are repeated at multiple temperatures. The computed results are in good agreement with the available experimental values, validating both the intermonomer PES developed and the methodology used. For lines in the 01101←00001 band of CO2 , temperature-dependent Ar-broadening coefficients are reported for the first time. The parameters presented should prove useful, among other applications, for the accurate experimental determination of CO2 and Ar abundances in planetary atmospheres.

6.
BMC Urol ; 23(1): 198, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036996

RESUMO

BACKGROUND: Stress urinary incontinence (SUI) is a common condition that requires proper evaluation to select a personalized therapy. Vaginal Tactile Imaging (VTI) is a novel method to assess the biomechanical parameters of the pelvic floor. METHODS: Women with SUI were enrolled in this cross-sectional study. Participants completed the Medical, Epidemiologic, and Social Aspects of Aging (MESA) questionnaire and the Patient Global Impression of Severity Question (PGI-S) and underwent a VTI examination. Based on the MESA and PGI-S questionnaires, participants were divided into mild, moderate, and severe SUI groups. Fifty-two biomechanical parameters of the pelvic floor were measured by VTI and compared between the groups (mild vs. moderate and severe). SUI Score and Index were calculated from the MESA questionnaire. Pearson correlation was used to determine the strength of association between selected VTI parameters and the MESA SUI Index and MESA SUI Score. RESULTS: Thirty-one women were enrolled into the study. Significant differences were observed in the VTI parameters 16, 22-24, 38, 39 when the difference between mild and severe subgroups of SUI based on the PGI-S score was examined. Parameter 16 refers to the maximum gradient at the perineal body, parameter 22-24 refers to the pressure response of the tissues behind the vaginal walls, and parameter 38, 39 refers the maximum pressure change and value on the right side at voluntary muscle contraction. VTI parameter 49, describing the displacement of the maximum pressure peak in the anterior compartment, showed a significant difference between the mild SUI and the moderate-severe SUI according to the MESA SUI score (mean ± SD 14.06 ± 5.16 vs. 7.54 ± 7.46, P = 0.04). The MESA SUI Index and SUI Score displayed a positive correlation concerning VTI parameters 4 (the maximum value of the posterior gradient) and 27 (the displacement of the maximum pressure peak in the anterior compartment) (VTI4 vs. MESA SUI Index r = 0.373, P = 0.039; VTI4 vs. MESA SUI Score r = 0.376, P = 0.037; VTI27 vs. MESA SUI Index r = 0.366, P = 0.043; VTI27 vs. MESA SUI Score r = 0.363, P = 0.044). CONCLUSIONS: Female pelvic floor biomechanical parameters, as measured by VTI, correlate significantly with the severity of SUI and may help guide therapeutic decisions.


Assuntos
Incontinência Urinária por Estresse , Feminino , Humanos , Incontinência Urinária por Estresse/terapia , Diafragma da Pelve/fisiologia , Estudos Transversais , Contração Muscular , Envelhecimento , Terapia por Exercício , Resultado do Tratamento
7.
J Chem Theory Comput ; 19(23): 8767-8781, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032107

RESUMO

Detailed structural, dynamical, and vibrational analyses have been performed for systems composed of linear triatomic molecules solvated by a single rare-gas atom, He, Ne, or Ar. Among the chromophores of these van der Waals (vdW) dimers, there are four neutral molecules (CO2, CS2, N2O, and OCS) and six molecular cations (HHe2+, HNe2+, HAr2+, HHeNe+, HHeAr+, and HNeAr+), both of apolar and polar nature. Following the exploration of bonding preferences, high-level four-dimensional (4D) potential energy surfaces (PESs) have been developed for 24 vdW dimers, keeping the two intramonomer bond lengths fixed. For these 24 complexes, over 1500 bound vibrational states have been obtained via quasi-variational nuclear-motion computations, employing exact kinetic-energy operators together with the accurate 4D PESs and their 2D/3D cuts. The reduced-dimensional (2D to 4D) dimer models have been compared with full-dimensional (6D) ones in the cases of the neutral CO2·Ar and charged HHe2+·He dimers, corroborating the high accuracy of the 2D to 4D vibrational energies. The reduced-dimensional models suggest that (a) while the equilibrium structures are T-shaped and planar, the effective ground-state structures are nonplanar, (b) certain bound states belong to collinear molecular structures, even when they are not minima, (c) the vdW vibrations are heavily mixed and many states have amplitudes corresponding to both the T-shaped and collinear structures, (d) there are a few dimers, for which even some of the vdW fundamentals lie above the first dissociation limit, and (e) the vdW vibrations are almost fully decoupled from the intramonomer bending motion.

8.
J Phys Chem A ; 127(45): 9409-9418, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37930939

RESUMO

Intramolecular vibrational transition wavenumbers and intensities were calculated in the fundamental HOH-bending, fundamental OH-stretching, first OH-stretching-HOH-bending combination, and first OH-stretching overtone (ΔvOH = 2) regions of the water dimer's spectrum. Furthermore, the rotational-vibrational spectrum was calculated in the ΔvOH = 2 region at 10 K, corresponding to the temperature of the existing jet-expansion experiments. The calculated spectrum was obtained by combining results from a full-dimensional (12D) vibrational and a reduced-dimensional vibrational-rotational-tunneling model. The ΔvOH = 2 spectral region is rich in features due to contributions from multiple vibrational-rotational-tunneling sub-bands. Origins of the experimental vibrational bands depend on the assignment of the observed sub-bands. Based on our calculations, we assign the observed sub-bands, and our reassignment leads to new values for the vibrational band origins of the free donor and antisymmetric acceptor OH-stretching first overtones of ∼7227 and ∼7238 cm-1, respectively. The observed bands with origins at 7192.34 and ∼7366 cm-1 are assigned to the symmetric acceptor OH-stretching first overtone and the OH-stretching combination of the donor, respectively.

9.
Phys Chem Chem Phys ; 25(35): 23614-23625, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37622426

RESUMO

Lamb dips of twenty lines in the P, Q, and R branches of the ν1 + ν3 + ν41 vibrational band of 12C2H2, in the spectral window of 7125-7230 cm-1, have been measured using an upgraded comb-calibrated frequency-stabilized cavity ring-down spectrometer, designed for extensive sub-Doppler measurements. Due to the large number of carefully executed Lamb-dip experiments, and to the extrapolation of absolute frequencies to zero pressure in each case, the combined average uncertainty of the measured line-center positions is 15 kHz (5 × 10-7 cm-1) with a 2-σ confidence level. Selection of the twenty lines was based on the theory of spectroscopic networks (SN), ensuring that a large number of transitions, measured previously by precision-spectroscopy investigations, could be connected to the para and ortho principal components of the SN of 12C2H2. The assembled SN contains 331 highly precise transitions, 119 and 121 of which are in the ortho and para principal components, respectively, while the rest remain in floating components. The para- and ortho-12C2H2 energy-level lists, determined during the present study, contain 82 and 80 entries, respectively, with an accuracy similar to that of the lines. Based on the newly assembled lists of para- and ortho-12C2H2 empirical energy levels, a line list, called TenkHz, has been generated. The TenkHz line list contains 282 entries in the spectral range of 5898.97-7258.87 cm-1; thus far, only 149 of them have been measured directly via precision spectroscopy. The TenkHz line list includes 35 intense lines that are missing in the HITRAN2020 database.

10.
Angew Chem Int Ed Engl ; 62(41): e202306744, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37561837

RESUMO

Quantum mechanics dictates that nuclei must undergo some delocalization. In this work, emergence of quantum nuclear delocalization and its rovibrational fingerprints are discussed for the case of the van der Waals complex HHe 3 + ${{\rm{HHe}}_3^ + }$ . The equilibrium structure of HHe 3 + ${{\rm{HHe}}_3^ + }$ is planar and T-shaped, one He atom solvating the quasi-linear He-H+ -He core. The dynamical structure of HHe 3 + ${{\rm{HHe}}_3^ + }$ , in all of its bound states, is fundamentally different. As revealed by spatial distribution functions and nuclear densities, during the vibrations of the molecule the solvating He is not restricted to be in the plane defined by the instantaneously bent HHe 2 + ${{\rm{HHe}}_2^ + }$ chomophore, but freely orbits the central proton, forming a three-dimensional torus around the HHe 2 + ${{\rm{HHe}}_2^ + }$ chromophore. This quantum delocalization is observed for all vibrational states, the type of vibrational excitation being reflected in the topology of the nodal surfaces in the nuclear densities, showing, for example, that intramolecular bending involves excitation along the circumference of the torus.

11.
Front Synaptic Neurosci ; 15: 1233569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635750

RESUMO

Epilepsy is a prevalent neurological condition, with underlying neuronal mechanisms involving hyperexcitability and hypersynchrony. Imbalance between excitatory and inhibitory circuits, as well as histological reorganization are relatively well-documented in animal models or even in the human hippocampus, but less is known about human neocortical epileptic activity. Our knowledge about changes in the excitatory signaling is especially scarce, compared to that about the inhibitory cell population. This study investigated the firing properties of single neurons in the human neocortex in vitro, during pharmacological blockade of glutamate receptors, and additionally evaluated anatomical changes in the excitatory circuit in tissue samples from epileptic and non-epileptic patients. Both epileptic and non-epileptic tissues exhibited spontaneous population activity (SPA), NMDA receptor antagonization reduced SPA recurrence only in epileptic tissue, whereas further blockade of AMPA/kainate receptors reversibly abolished SPA emergence regardless of epilepsy. Firing rates did not significantly change in excitatory principal cells and inhibitory interneurons during pharmacological experiments. Granular layer (L4) neurons showed an increased firing rate in epileptic compared to non-epileptic tissue. The burstiness of neurons remained unchanged, except for that of inhibitory cells in epileptic recordings, which decreased during blockade of glutamate receptors. Crosscorrelograms computed from single neuron discharge revealed both mono- and polysynaptic connections, particularly involving intrinsically bursting principal cells. Histological investigations found similar densities of SMI-32-immunopositive long-range projecting pyramidal cells in both groups, and shorter excitatory synaptic active zones with a higher proportion of perforated synapses in the epileptic group. These findings provide insights into epileptic modifications from the perspective of the excitatory system and highlight discrete alterations in firing patterns and synaptic structure. Our data suggest that NMDA-dependent glutamatergic signaling, as well as the excitatory synaptic machinery are perturbed in epilepsy, which might contribute to epileptic activity in the human neocortex.

12.
Front Bioeng Biotechnol ; 11: 1165853, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409165

RESUMO

Introduction: The functionalization of titanium (Ti) and titanium alloys (Ti6Al4V) implant surfaces via material-specific peptides influence host/biomaterial interaction. The impact of using peptides as molecular linkers between cells and implant material to improve keratinocyte adhesion is reported. Results: The metal binding peptides (MBP-1, MBP-2) SVSVGMKPSPRP and WDPPTLKRPVSP were selected via phage display and combined with laminin-5 or E-cadherin epithelial cell specific peptides (CSP-1, CSP-2) to engineer four metal-cell specific peptides (MCSPs). Single-cell force spectroscopy and cell adhesion experiments were performed to select the most promising candidate. In vivo tests using the dental implant for rats showed that the selected bi functional peptide not only enabled stable cell adhesion on the trans-gingival part of the dental implant but also arrested the unwanted apical migration of epithelial cells. Conclusion: The results demonstrated the outstanding performance of the bioengineered peptide in improving epithelial adhesion to Ti based implants and pointed towards promising new opportunities for applications in clinical practice.

13.
J Chem Theory Comput ; 19(1): 42-50, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36534596

RESUMO

Experimental and computational results about the structure, dynamics, and rovibrational spectra of protonated methane have challenged a considerable number of traditional chemical concepts. Hereby theoretical and computational results are provided about the dynamical structure of CH5+. It is shown that the ground vibrational state investigated thus far by computations, forbidden by nuclear-spin statistics, has a structure similar to the first allowed vibrational state and, in fact, the structures of all vibrational states significantly below 200 cm-1 are highly similar. Spatial delocalization of the nuclei, determined by nuclear densities computed from accurate variational vibrational wave functions, turns out to be limited when viewed in the body-fixed frame, confirming that the effective structure of CH5+ is well described as a CH3+ tripod with a H2 unit on top of it. The interesting and unusual qualitative aspects of the sophisticated state-dependent variational results receive full explanation via simple quantum-graph models.

14.
Opt Express ; 30(26): 46040-46059, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558568

RESUMO

A non-linear spectroscopic study of the HDO molecule is performed in the wavelength range of 1.36-1.42 µm using noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy (NICE-OHMS). More than 100 rovibrational Lamb dips are recorded, with an experimental precision of 2-20 kHz, related to the first overtone of the O-H stretch fundamental of HD16O and HD18O. Significant perturbations, including distortions, shifts, and splittings, have been observed for a number of Lamb dips. These spectral perturbations are traced back to an AC-Stark effect, arising due to the strong laser field applied in all saturation-spectroscopy experiments. The AC-Stark effect mixes parity pairs, that is pairs of rovibrational states whose assignment differs solely in the Kc quantum number, where Kc is part of the standard J K a,K c asymmetric-top rotational label. Parity-pair mixing seems to be especially large for parity pairs with Ka ≥ 3, whereby their energy splittings become as small as a few MHz, resulting in multi-component asymmetric Lamb-dip profiles of gradually increasing complexity. These complex profiles often include crossover resonances. This effect is well known in saturation spectroscopy, but has not been reported in combination with parity-pair mixing. Parity-pair mixing is not seen in H2 16O and H2 18O, because their parity pairs correspond to ortho and para nuclear-spin isomers, whose interaction is prohibited. Despite the frequency shifts observed for HD16O and HD18O, the absolute accuracy of the detected transitions still exceeds that achievable by Doppler-limited techniques.

15.
Phys Chem Chem Phys ; 24(32): 19287-19301, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35929432

RESUMO

Detailed understanding of the energy-level structure of the quantum states as well as of the rovibronic spectra of the ethylidyne (CH) and the hydroxyl (OH) radicals is mandatory for a multitude of modelling efforts within multiple chemical, combustion, astrophysical, and atmospheric environments. Accurate empirical rovibronic energy levels, with associated uncertainties, are reported for the low-lying doublet electronic states of 12CH and 16OH, using the Measured Active Rotational-Vibrational Energy Levels (MARVEL) algorithm. For 12CH, a total of 1521 empirical energy levels are determined in the primary spectroscopic network (SN) of the radical, corresponding to the following seven electronic states: X 2Π, A 2Δ, B 2Σ-, C2 Σ+, D 2Π, E 2Σ+, and F 2Σ+. The energy levels are derived from 6348 experimentally measured and validated transitions, collected from 29 sources. For 16OH, the lowest four doublet electronic states, X 2Π, A 2Σ+, B 2Σ+, and C 2Σ+, are considered, and a careful analysis and validation of 15 938 rovibronic transitions, collected from 45 sources, results in 1624 empirical rovibronic energy levels. The large set of spectroscopic data presented should facilitate the refinement of line lists for the 12CH and 16OH radicals. For both molecules hyperfine-resolved experimental transitions have also been considered, forming SNs independent from the primary SNs.

16.
Phys Chem Chem Phys ; 24(20): 12176-12195, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35543594

RESUMO

The linear molecular ions H2He+, HHe+2, and He+3 are the central units (chromophores) of certain He-solvated complexes of the H2He+n, HHe+n, and He+n families, respectively. These are complexes which do exist, according to mass-spectrometry studies, up to very high n values. Apparently, for some of the H2He+n and He+n complexes, the linear symmetric tetratomic H2He+2 and the diatomic He+2 cations, respectively, may also be the central units. In this study, definitive structures, relative energies, zero-point vibrational energies, and (an)harmonic vibrational fundamentals, and, in some cases, overtones and combination bands, are established mostly for the triatomic chromophores. The study is also extended to the deuterated isotopologues D2He+, DHe+2, and D2He+2. To facilitate and improve the electronic-structure computations performed, new atom-centered, fixed-exponent, Gaussian-type basis sets called MAX, with X = T(3), Q(4), P(5), and H(6), are designed for the H and He atoms. The focal-point-analysis (FPA) technique is employed to determine definitive relative energies with tight uncertainties for reactions involving the molecular ions. The FPA results determined include the 0 K proton and deuteron affinities of the 4He atom, 14 875(9) cm-1 [177.95(11) kJ mol-1] and 15 229(8) cm-1 [182.18(10) kJ mol-1], respectively, the dissociation energies of the He+2 → He+ + He, HHe+2 → HHe+ + He, and He+3 → He+2 + He reactions, 19 099(13) cm-1 [228.48(16) kJ mol-1], 3948(7) cm-1 [47.23(8) kJ mol-1], and 1401(12) cm-1 [16.76(14) kJ mol-1], respectively, the dissociation energy of the DHe+2 → DHe+ + He reaction, 4033(6) cm-1 [48.25(7) kJ mol-1], the isomerization energy between the two linear isomers of the [H, He, He]+ system, 3828(40) cm-1 [45.79(48) kJ mol-1], and the dissociation energies of the H2He+ → H+2 + He and the H2He+2 → H2He+ + He reactions, 1789(4) cm-1 [21.40(5) kJ mol-1] and 435(6) cm-1 [5.20(7) kJ mol-1], respectively. The FPA estimates of the first dissociation energy of D2He+ and D2He+2 are 1986(4) cm-1 [23.76(5) kJ mol-1] and 474(5) cm-1 [5.67(6) kJ mol-1], respectively. Determining the vibrational fundamentals of the triatomic chromophores with second-order vibrational perturbation theory (VPT2) and vibrational configuration interaction (VCI) techniques, both built around the Eckart-Watson Hamiltonian, proved unusually challenging. For the species studied, VPT2 has difficulties yielding dependable results, in some cases even for the fundamentals of the H-containing molecular cations, while carefully executed VCI computations yield considerably improved spectroscopic results. In a few cases unusually large anharmonic corrections to the fundamentals, on the order of 15% of the harmonic value, have been observed.

17.
Sci Rep ; 12(1): 6280, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428851

RESUMO

Knowledge about the activity of single neurons is essential in understanding the mechanisms of synchrony generation, and particularly interesting if related to pathological conditions. The generation of interictal spikes-the hypersynchronous events between seizures-is linked to hyperexcitability and to bursting behaviour of neurons in animal models. To explore its cellular mechanisms in humans we investigated the activity of clustered single neurons in a human in vitro model generating both physiological and epileptiform synchronous events. We show that non-epileptic synchronous events resulted from the finely balanced firing of excitatory and inhibitory cells, which was shifted towards an enhanced excitability in epileptic tissue. In contrast, interictal-like spikes were characterised by an asymmetric overall neuronal discharge initiated by excitatory neurons with the presumptive leading role of bursting pyramidal cells, and possibly terminated by inhibitory interneurons. We found that the overall burstiness of human neocortical neurons is not necessarily related to epilepsy, but the bursting behaviour of excitatory cells comprising both intrinsic and synaptically driven bursting is clearly linked to the generation of epileptiform synchrony.


Assuntos
Epilepsia , Potenciais de Ação/fisiologia , Animais , Epilepsia/patologia , Humanos , Interneurônios/patologia , Neurônios/fisiologia , Células Piramidais/fisiologia
18.
J Chem Phys ; 156(16): 164304, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35490001

RESUMO

A model based on the finite-basis representation of a vibrational Hamiltonian expressed in internal coordinates is developed. The model relies on a many-mode, low-order expansion of both the kinetic energy operator and the potential energy surface (PES). Polyad truncations and energy ceilings are used to control the size of the vibrational basis to facilitate accurate computations of the OH stretch and HOH bend intramolecular transitions of the water dimer (H2 16O)2. Advantages and potential pitfalls of the applied approximations are highlighted. The importance of choices related to the treatment of the kinetic energy operator in reduced-dimensional calculations and the accuracy of different water dimer PESs are discussed. A range of different reduced-dimensional computations are performed to investigate the wavenumber shifts in the intramolecular transitions caused by the coupling between the intra- and intermolecular modes. With the use of symmetry, full 12-dimensional vibrational energy levels of the water dimer are calculated, predicting accurately the experimentally observed intramolecular fundamentals. It is found that one can also predict accurate intramolecular transition wavenumbers for the water dimer by combining a set of computationally inexpensive reduced-dimensional calculations, thereby guiding future effective-Hamiltonian treatments.

19.
J Chem Theory Comput ; 18(3): 1788-1798, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35201747

RESUMO

Following the full realization of the importance of noncovalent interactions, finding and characterizing stationary points (SP), of various order, for weakly bound oligomers have become important tasks for computational chemists. An efficient algorithm and an associated computer code, called oligoCGO, are described, facilitating constrained geometry optimization of oligomers of arbitrary structure and complexity and normal-mode vibrational analysis at nonstationary geometries. To minimize the adverse effects of nonzero forces on harmonic vibrational analyses at constrained stationary points (cSP), two residual gradient correction (RGC) schemes are proposed. RGC1, for which a rigorous justification is given, is based on ignoring the remaining forces in internal-coordinate space. RGC2 modifies the geometry of the cSP in a single Newton step and recalculates the Cartesian Hessian at this updated geometry. As demonstrated by 10 examples related to the water-water, water-methane, and methane-methane dimers as well as the methane trimer, without RGC the harmonic analysis of cSPs may result in even qualitatively incorrect results when compared to reference values obtained at the nearby unconstrained SPs (uSP). Both RGC protocols work exceedingly well, and the corrected harmonic wavenumbers of the cSPs are very close to their uSP counterparts.

20.
J Comput Chem ; 43(8): 519-538, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35084047

RESUMO

Motivated by recent experiments, the laser-induced alignment-and-orientation (A&O) dynamics of the prolate symmetric top CH3 X (X = F, Cl, Br, I) molecules is investigated, with particular emphasis on the effect of halogen substitution on the rotational constants, dipole moments, and polarizabilities of these species, as these quantities determine the A&O dynamics. Insight into possible control schemes for preferred A&O dynamics of halogenated molecules and best practices for A&O simulations are provided, as well. It is shown that for accurate A&O -dynamics simulations it is necessary to employ large basis sets and high levels of electron correlation when computing the rotational constants, dipole moments, and polarizabilities. The benchmark-quality values of these molecular parameters, corresponding to the equilibrium, as well as the vibrationally averaged structures are obtained with the help of the focal-point analysis (FPA) technique and explicit electronic-structure computations utilizing the gold-standard CCSD(T) approach, basis sets up to quintuple-zeta quality, core-correlation contributions and, in particular, relativistic effects for CH3 Br and CH3 I. It is shown that the different A&O behavior of the CH3 X molecules in the optical regime is mostly caused by the differences in their polarizability anisotropy, in other terms, the size of the halogen atom. In contrast, the A&O dynamics of the CH3 X series induced by an intense few-cycle THz pulse is mostly governed by changes in the rotational constants, due to the similar dipole moments of the CH3 X molecules. The A&O dynamics is most sensitive to the B rotational constant: even the difference between its equilibrium and vibrationally-averaged values results in noticeably different A&O dynamics. The contribution of rotational states having different symmetry, weighted by nuclear-spin statistics, to the A&O dynamics is also studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...