Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(43): 17498-503, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24101508

RESUMO

An original oral formulation of docetaxel nanocapsules (NCs) embedded in microparticles elicited in rats a higher bioavailability compared with the i.v. administration of the commercial docetaxel solution, Taxotere. In the present study, various animal studies were designed to elucidate the absorption process of docetaxel from such a delivery system. Again, the docetaxel NC formulation elicited a marked enhanced absorption compared with oral Taxotere in minipigs, resulting in relative bioavailability and Cmax values 10- and 8.4-fold higher, respectively, confirming the previous rat study results. It was revealed that orally absorbed NCs altered the elimination and distribution of docetaxel, as shown in the organ biodistribution rat study, due to their reinforced coating, while transiting through the enterocytes by surface adsorption of apoproteins and phospholipids. These findings were demonstrated by the cryogenic-temperature transmission electron microscopy results and confirmed by the use of a chylomicron flow blocker, cycloheximide, that prevented the oral absorption of docetaxel from the NC formulation in an independent pharmacokinetic study. The lipoproteinated NCs reduced the docetaxel release in plasma and its distribution among the organs. The improved anticancer activity compared with i.v. Taxotere, observed in the metastatic lung cancer model in Severe Combined Immune Deficiency-beige (SCID-bg) mice, should be attributed to the extravasation effect, leading to the lipoproteinated NC accumulation in lung tumors, where they exert a significant therapeutic action. To the best of our knowledge, no study has reported that the absorption of NCs was mediated by a lymphatic process and reinforced during their transit.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Sistema Linfático/metabolismo , Nanocápsulas/administração & dosagem , Taxoides/administração & dosagem , Absorção , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Docetaxel , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos SCID , Microscopia Eletrônica de Varredura , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Metástase Neoplásica , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Suínos , Porco Miniatura , Taxoides/sangue , Taxoides/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancer Res ; 71(8): 3018-28, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21363913

RESUMO

Docetaxel, an efficient chemotherapeutic drug, exhibits low and variable oral bioavailability due to the active efflux by P-glycoprotein (P-gp) and more so to CYP3A4 gut metabolism. Using a spray-drying technique, docetaxel was incorporated in PLGA [poly(lactic-co-glycolic acid)] nanocapsules (NC) which were embedded in entero-coated microparticles. An oral administration of the NC formulation elicited a higher absolute bioavailability than both a docetaxel solution (276%) and a free docetaxel NC formulation (400%) injected intravenously, a 5-mg/kg dose. The batches (B) I and II NC formulations elicited C(max) values that were 1,735% and 2,254%, respectively; higher than the C(max) value of the oral docetaxel solution combined with blank microparticles, a 10-mg/kg dose. No significant difference in AUC (area under curve) was observed between the batches. These unexpected results can be explained only if the pharmacokinetics of docetaxel had been modified. It was shown that NCs released from the microparticles penetrated the enterocytes, bypassing P-gp; apparently circumventing gut metabolism and accumulating within the lymphatic system from where both intact or biodegraded NCs and free docetaxel were progressively released into the circulation as plausibly supported by the fluorescent imaging results. Furthermore, the circulating docetaxel in plasma was unencapsulated and circulated either in free form or bound to albumin. Both free docetaxel NCs and microparticles exhibited in vitro efficacy on WRC 256 cells suggesting that the activity of docetaxel was not altered. This delivery concept has potential for clinical translation, perhaps allowing docetaxel chemotherapy to be switched from intravenous to oral delivery.


Assuntos
Antineoplásicos/farmacocinética , Taxoides/farmacocinética , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Antineoplásicos/química , Disponibilidade Biológica , Carcinoma 256 de Walker/tratamento farmacológico , Carcinoma 256 de Walker/metabolismo , Docetaxel , Ácido Láctico/administração & dosagem , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/química , Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Comprimidos com Revestimento Entérico/administração & dosagem , Comprimidos com Revestimento Entérico/química , Taxoides/administração & dosagem , Taxoides/sangue , Taxoides/química , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...