Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 348, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609955

RESUMO

This review aims to encapsulate the current knowledge in extracellular vesicles extracted from amniotic fluid and amniotic fluid derived stem/stromal cells. Amniotic fluid (AF) bathes the developing fetus, providing nutrients and protection from biological and mechanical dangers. In addition to containing a myriad of proteins, immunoglobulins and growth factors, AF is a rich source of extracellular vesicles (EVs). These vesicles originate from cells in the fetoplacental unit. They are biological messengers carrying an active cargo enveloped within the lipid bilayer. EVs in reproduction are known to play key roles in all stages of pregnancy, starting from fertilisation through to parturition. The intriguing biology of AF-derived EVs (AF-EVs) in pregnancy and their untapped potential as biomarkers is currently gaining attention. EV studies in numerous animal and human disease models have raised expectations of their utility as therapeutics. Amniotic fluid stem cell and mesenchymal stromal cell-derived EVs (AFSC-EVs) provide an established supply of laboratory-made EVs. This cell-free mode of therapy is popular as an alternative to stem cell therapy, revealing similar, if not better therapeutic outcomes. Research has demonstrated the successful application of AF-EVs and AFSC-EVs in therapy, harnessing their anti-inflammatory, angiogenic and regenerative properties. This review provides an overview of such studies and discusses concerns in this emerging field of research.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Humanos , Feminino , Gravidez , Líquido Amniótico , Conhecimento
2.
Nat Commun ; 12(1): 3950, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168137

RESUMO

The concept that extracellular vesicles (EVs) from the diet can be absorbed by the intestinal tract of the consuming organism, be bioavailable in various organs, and in-turn exert phenotypic changes is highly debatable. Here, we isolate EVs from both raw and commercial bovine milk and characterize them by electron microscopy, nanoparticle tracking analysis, western blotting, quantitative proteomics and small RNA sequencing analysis. Orally administered bovine milk-derived EVs survive the harsh degrading conditions of the gut, in mice, and is subsequently detected in multiple organs. Milk-derived EVs orally administered to mice implanted with colorectal and breast cancer cells reduce the primary tumor burden. Intriguingly, despite the reduction in primary tumor growth, milk-derived EVs accelerate metastasis in breast and pancreatic cancer mouse models. Proteomic and biochemical analysis reveal the induction of senescence and epithelial-to-mesenchymal transition in cancer cells upon treatment with milk-derived EVs. Timing of EV administration is critical as oral administration after resection of the primary tumor reverses the pro-metastatic effects of milk-derived EVs in breast cancer models. Taken together, our study provides context-based and opposing roles of milk-derived EVs as metastasis inducers and suppressors.


Assuntos
Vesículas Extracelulares , Leite/citologia , Neoplasias Experimentais/patologia , Administração Oral , Animais , Disponibilidade Biológica , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Bovinos , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Vesículas Extracelulares/química , Vesículas Extracelulares/genética , Feminino , Humanos , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/secundário , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/terapia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Subcell Biochem ; 97: 19-43, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33779912

RESUMO

Extracellular vesicles (EVs) refer to vesicles that are released by cells into the extracellular space. EVs mediate cell-to-cell communication via delivery of functional biomolecules between host and recipient cells. EVs can be categorised based on their mode of biogenesis and secretion and include apoptotic bodies, ectosomes or shedding microvesicles and exosomes among others. EVs have gained immense interest in recent years owing to their implications in pathophysiological conditions. Indeed, EVs have been proven useful in clinical applications as potential drug delivery vehicles and as source of diagnostic biomarkers. Despite the growing body of evidence supporting the clinical benefits, the processes involved in the biogenesis of EVs are poorly understood. Hence, it is critical to gain a deeper understanding of the underlying molecular machineries that ultimately govern the biogenesis and secretion of EVs. This chapter discusses the current knowledge on molecular mechanisms involved in the biogenesis of various subtypes of EVs.


Assuntos
Exossomos , Vesículas Extracelulares , Sistemas de Liberação de Medicamentos
4.
Subcell Biochem ; 97: 45-60, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33779913

RESUMO

Extracellular vesicles (EVs) are naturally occurring nanoparticles that contain proteins and nucleic acids. It is speculated that cells release EVs loaded with a selective cargo of proteins through highly regulated processes. Several proteomic and biochemical studies have highlighted phosphorylated, glycosylated, ubiquitinated, SUMOylated, oxidated and palmitoylated proteins within the EVs. Emerging evidences suggest that post-translational modifications (PTMs) can regulate the sorting of specific proteins into EVs and such proteins with specific PTMs have also been identified in clinical samples. Hence, it has been proposed that EV proteins with PTMs could be used as potential biomarkers of disease conditions. Among the other cellular mechanisms, the endosomal sorting complex required for transport (ESCRT) is also implicated in cargo sorting into EVs. In this chapter, various PTMs that are shown to regulate protein cargo sorting into EVs will be discussed.


Assuntos
Vesículas Extracelulares , Proteômica , Vesículas Extracelulares/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteínas/metabolismo
5.
Elife ; 52016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27554484

RESUMO

The TIM22 complex mediates the import of hydrophobic carrier proteins into the mitochondrial inner membrane. While the TIM22 machinery has been well characterised in yeast, the human complex remains poorly characterised. Here, we identify Tim29 (C19orf52) as a novel, metazoan-specific subunit of the human TIM22 complex. The protein is integrated into the mitochondrial inner membrane with it's C-terminus exposed to the intermembrane space. Tim29 is required for the stability of the TIM22 complex and functions in the assembly of hTim22. Furthermore, Tim29 contacts the Translocase of the Outer Mitochondrial Membrane, TOM complex, enabling a mechanism for transport of hydrophobic carrier substrates across the aqueous intermembrane space. Identification of Tim29 highlights the significance of analysing mitochondrial import systems across phylogenetic boundaries, which can reveal novel components and mechanisms in higher organisms.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/análise , Membranas Mitocondriais/enzimologia , Subunidades Proteicas/análise , Linhagem Celular , Humanos , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Multimerização Proteica
6.
Oncotarget ; 6(17): 15375-96, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-25944692

RESUMO

Extracellular vesicles (EVs) include the exosomes (30-100 nm) that are produced through the endocytic pathway via the multivesicular bodies and the ectosomes (100-1000 nm) that are released through the budding of the plasma membrane. Despite the differences in the mode of biogenesis and size, reliable markers that can distinguish between exosomes and ectosomes are non-existent. Moreover, the precise functional differences between exosomes and ectosomes remains poorly characterised. Here, using label-free quantitative proteomics, we highlight proteins that could be exploited as markers to discriminate between exosomes and ectosomes. For the first time, a global proteogenomics analysis unveiled the secretion of mutant proteins that are implicated in cancer progression through tumor-derived EVs. Follow up integrated bioinformatics analysis highlighted the enrichment of oncogenic cargo in exosomes and ectosomes. Interestingly, exosomes induced significant cell proliferation and migration in recipient cells compared to ectosomes confirming the oncogenic nature of exosomes. These findings ascertain that cancer cells facilitate oncogenesis by the secretion of mutant and oncoproteins into the tumor microenvironment via exosomes and ectosomes. The integrative proteogenomics approach utilized in this study has the potential to identify disease biomarker candidates which can be later assayed in liquid biopsies obtained from cancer patients.


Assuntos
Carcinogênese/patologia , Micropartículas Derivadas de Células/patologia , Exossomos/patologia , Neuroblastoma/patologia , Apoptose/fisiologia , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Proteômica , Espectrometria de Massas em Tandem , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...