Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4024, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419890

RESUMO

Changes in the abundance and diversity of neural cell types, and their connectivity, shape brain composition and provide the substrate for behavioral evolution. Although investment in sensory brain regions is understood to be largely driven by the relative ecological importance of particular sensory modalities, how selective pressures impact the elaboration of integrative brain centers has been more difficult to pinpoint. Here, we provide evidence of extensive, mosaic expansion of an integration brain center among closely related species, which is not explained by changes in sites of primary sensory input. By building new datasets of neural traits among a tribe of diverse Neotropical butterflies, the Heliconiini, we detected several major evolutionary expansions of the mushroom bodies, central brain structures pivotal for insect learning and memory. The genus Heliconius, which exhibits a unique dietary innovation, pollen-feeding, and derived foraging behaviors reliant on spatial memory, shows the most extreme enlargement. This expansion is primarily associated with increased visual processing areas and coincides with increased precision of visual processing, and enhanced long term memory. These results demonstrate that selection for behavioral innovation and enhanced cognitive ability occurred through expansion and localized specialization in integrative brain centers.


Assuntos
Borboletas , Animais , Encéfalo , Aprendizagem , Insetos , Corpos Pedunculados
2.
Sensors (Basel) ; 23(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37447927

RESUMO

Small and medium-sized enterprises (SMEs) often encounter practical challenges and limitations when extracting valuable insights from the data of retrofitted or brownfield equipment. The existing literature fails to reflect the full reality and potential of data-driven analysis in current SME environments. In this paper, we provide an anonymized dataset obtained from two medium-sized companies leveraging a non-invasive and scalable data-collection procedure. The dataset comprises mainly power consumption machine data collected over a period of 7 months and 1 year from two medium-sized companies. Using this dataset, we demonstrate how machine learning (ML) techniques can enable SMEs to extract useful information even in the short term, even from a small variety of data types. We develop several ML models to address various tasks, such as power consumption forecasting, item classification, next machine state prediction, and item production count forecasting. By providing this anonymized dataset and showcasing its application through various ML use cases, our paper aims to provide practical insights for SMEs seeking to leverage ML techniques with their limited data resources. The findings contribute to a better understanding of how ML can be effectively utilized in extracting actionable insights from limited datasets, offering valuable implications for SMEs in practical settings.


Assuntos
Indústrias , Aprendizado de Máquina , Coleta de Dados
3.
Sensors (Basel) ; 22(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35808430

RESUMO

Wireless networks have drastically influenced our lifestyle, changing our workplaces and society. Among the variety of wireless technology, Wi-Fi surely plays a leading role, especially in local area networks. The spread of mobiles and tablets, and more recently, the advent of Internet of Things, have resulted in a multitude of Wi-Fi-enabled devices continuously sending data to the Internet and between each other. At the same time, Machine Learning has proven to be one of the most effective and versatile tools for the analysis of fast streaming data. This systematic review aims at studying the interaction between these technologies and how it has developed throughout their lifetimes. We used Scopus, Web of Science, and IEEE Xplore databases to retrieve paper abstracts and leveraged a topic modeling technique, namely, BERTopic, to analyze the resulting document corpus. After these steps, we inspected the obtained clusters and computed statistics to characterize and interpret the topics they refer to. Our results include both the applications of Wi-Fi sensing and the variety of Machine Learning algorithms used to tackle them. We also report how the Wi-Fi advances have affected sensing applications and the choice of the most suitable Machine Learning models.


Assuntos
Redes Locais , Aprendizado de Máquina , Algoritmos , Bases de Dados Factuais , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...