Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 260: 106584, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37267806

RESUMO

Estrogenic endocrine disrupting chemicals (EEDC) have been suspected to impact offspring in a transgenerational manner via modifications of the germline epigenome in the directly exposed generations. A holistic assessment of the concentration/ exposure duration-response, threshold level, and critical exposure windows (parental gametogenesis and embryogenesis) for the transgenerational evaluation of reproduction and immune compromise concomitantly will inform the overall EEDC exposure risk. We conducted a multigenerational study using the environmental estrogen, 17α-ethinylestradiol (EE2), and the marine laboratory model fish Oryzias melastigma (adult, F0) and their offspring (F1-F4) to identify transgenerationally altered offspring generations and phenotype persistence. Three exposure scenarios were used: short parental exposure, long parental exposure, and a combined parental and embryonic exposure using two concentrations of EE2 (33ng/L, 113ng/L). The reproductive fitness of fish was evaluated by assessing fecundity, fertilization rate, hatching success, and sex ratio. Immune competence was assessed in adults via a host-resistance assay. EE2 exposure during both parental gametogenesis and embryogenesis was found to induce concentration/ exposure duration-dependent transgenerational reproductive effects in the unexposed F4 offspring. Furthermore, embryonic exposure to 113 ng/L EE2 induced feminization of the directly exposed F1 generation, followed by subsequent masculinization of the F2 and F3 generations. A sex difference was found in the transgenerationally impaired reproductive output with F4 females being sensitive to the lowest concentration of EE2 (33 ng/L) upon long-term ancestral parent exposure (21 days). Conversely, F4 males were affected by ancestral embryonic EE2 exposure. No definitive transgenerational impacts on immune competence were identified in male or female offspring. In combination, these results indicate that EEDCs can be transgenerational toxicants that may negatively impact the reproductive success and population sustainability of fish populations.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Feminino , Masculino , Oryzias/fisiologia , Aptidão Genética , Poluentes Químicos da Água/toxicidade , Reprodução , Fertilidade , Etinilestradiol/toxicidade
2.
Zygote ; 28(1): 9-23, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31590697

RESUMO

Germ plasm, a cytoplasmic factor of germline cell differentiation, is suggested to be a perspective tool for in vitro meiotic differentiation. To discriminate between the: (1) germ plasm-related structures (GPRS) involved in meiosis triggering; and (2) GPRS involved in the germ plasm storage phase, we investigated gametogenesis in the marine medaka Oryzias melastigma. The GPRS of the mitosis-to-meiosis period are similar in males and females. In both sexes, five events typically occur: (1) turning of the primary Vasa-positive germ plasm granules into the Vasa-positive intermitochondrial cement (IMC); (2) aggregation of some mitochondria by IMC followed by arising of mitochondrial clusters; (3) intramitochondrial localization of IMC-originated Vasa; followed by (4) mitochondrial cluster degradation; and (5) intranuclear localization of Vasa followed by this protein entering the nuclei (gonial cells) and synaptonemal complexes (zygotene-pachytene meiotic cells). In post-zygotene/pachytene gametogenesis, the GPRS are sex specific; the Vasa-positive chromatoid bodies are found during spermatogenesis, but oogenesis is characterized by secondary arising of Vasa-positive germ plasm granules followed by secondary formation and degradation of mitochondrial clusters. A complex type of germ plasm generation, 'the follicle cell assigned germ plasm formation', was found in late oogenesis. The mechanisms discovered are recommended to be taken into account for possible reconstruction of those under in vitro conditions.


Assuntos
Grânulos Citoplasmáticos/fisiologia , RNA Helicases DEAD-box/metabolismo , Células Germinativas/citologia , Oócitos/citologia , Oogênese , Oryzias/crescimento & desenvolvimento , Espermatócitos/citologia , Espermatogênese , Animais , Núcleo Celular , Grânulos Citoplasmáticos/ultraestrutura , Feminino , Proteínas de Peixes/metabolismo , Células Germinativas/metabolismo , Células Germinativas/ultraestrutura , Masculino , Oócitos/metabolismo , Espermatócitos/metabolismo
3.
Environ Sci Technol ; 53(20): 12018-12025, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31539238

RESUMO

Perfluorobutanesulfonate (PFBS), an environmental pollutant of emerging concern, significantly impairs offspring development and overall health after parental exposure. However, the true inducer of offspring developmental defects among the complexity of parental influences remains unknown. In the present study, marine medaka (Oryzias melastigma) were exposed to environmentally realistic concentrations of PFBS (0, 1, 3, and 10 µg/L) for an entire life cycle. By mixing and mating control and exposed medaka (male or female), a crossbreeding strategy was employed to produce offspring eggs from various crossbreeds, with the aim of differentiating the maternal and paternal influences. Measurements of swimming performance in larval offspring showed that larvae of exposed male parents swam hyperactively in comparison to the control larvae. Contrasting trends in PFBS transfer and maternal factor transfer (e.g., proteins and lipids) to that of swimming behavior eliminated these two factors as major inducers of offspring developmental impairment. Inheritance of the exposed paternal methylome marks in offspring may be partially responsible for abnormal swimming behavior, although different toxic mechanisms may be involved depending on the exposure concentration. Overall, these findings suggest that inheritance of epigenetic modifications implicates a long-lasting threat of PFBS to the fitness and sustainability of fish populations.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Feminino , Humanos , Larva , Estágios do Ciclo de Vida , Masculino , Reprodução
4.
Aquat Toxicol ; 203: 95-106, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30099325

RESUMO

Estrogenic endocrine disrupting chemicals (EEDCs) are present ubiquitously in sediments and aquatic ecosystems worldwide. The detrimental impact of EEDCs on the reproduction of wildlife is widely recognized. Increasing evidence shows the immunosuppressive effects of EEDCs in vertebrates. Yet, no studies have considered concomitantly EEDC-induced impacts on reproductive impairment and immune suppression in vivo, which are deemed essential for risk assessment and environmental monitoring. In this study, EE2 was used as a representative EEDC, for parallel evaluation of EEDC-induced immune suppression (immune marker gene expression, leukocyte numbers, host resistance assay, and immune competence index) and reproductive impairment (estrogen responsive gene expression, fecundity, fertilization success, hatching success, and reproductive competence index) in an established fish model (marine medaka Oryzias melastigma), considering sex-specific induction and adaptation and recovery responses under different EE2 exposure scenarios. The findings in marine medaka reveal distinct sex differences in the EE2-mediated biological responses. For female fish, low concentration of exogenous EE2 (33 ng/L) could induce hormesis (immune enhancement), enable adaptation (restored reproduction) and even boost fish resistance to bacterial challenge after abatement of EE2. However, a prolonged exposure to high levels of EE2 (113 ng/L) not only impaired F0 immune function, but also perturbed females recovering from reproductive impairment, resulting in a persistent impact on the F1 generation output. Thus, for female fish, the exposure concentration of EE2 is more critical than the dose of EE2 in determining the impacts of EE2 on immune function and reproduction. Conversely, male fish are far more sensitive than females to the presence of low levels of exogenous EE2 in water and the EE2-mediated biological impacts are clearly dose-dependent. It is also evident in male fish that direct contact of EE2 is essential to sustain impairments of immune competence and reproductive output as well as deregulation of immune function genes in vivo. The immunomodulatory pathways altered by EE2 were deciphered for male and female fish, separately. Downregulation of hepatic tlr3 and c3 (in female) and tlr3, tlr5 and c3 (in male) may be indicative of impaired fish immune competence. Taken together, impaired immune competence in the EE2-exposed fish poses an immediate thread on the survival of F0 population. Impaired reproduction in the EE2-exposed fish can directly affect F1 output. Parallel evaluation of immune competence and reproduction are important considerations when assessing the risk of sublethal levels of EE2/EEDCs in aquatic environments.


Assuntos
Etinilestradiol/toxicidade , Fatores Imunológicos/toxicidade , Oryzias/fisiologia , Reprodução/efeitos dos fármacos , Caracteres Sexuais , Animais , Biomarcadores/metabolismo , Monitoramento Ambiental , Feminino , Fertilidade/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Oryzias/imunologia , Poluentes Químicos da Água/toxicidade
5.
Environ Sci Technol ; 52(7): 4432-4439, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29565584

RESUMO

Accumulation of perfluorobutanesulfonate (PFBS) is frequently detected in biota, raising concerns about its ecological safety. However, hazardous effects of PFBS remain largely unexplored, especially for endocrine disrupting potency. In the present study, the multigenerational endocrine disrupting potential of PFBS was investigated by exposing F0 marine medaka eggs to PFBS at different concentrations (0, 1.0, 2.9, and 9.5 µg/L) until sexual maturity. The F1 and F2 generations were reared without continued exposure. Thyroidal disturbances were examined in all three generations. PFBS exposure decreased the levels of 3,5,3'-triiodothyronine (T3) in F0 female blood; however, it increased T3 or thyroxine (T4) levels in F0 brains, in which hyperthyroidism suppressed the local transcription of 5'-deiodinase 2 ( Dio2). Obviously decreased T3 was transferred to F1 eggs, although the parental influences were reversed in F1 larvae. Delayed hatching was coupled with elevated T3 levels in F1 larvae. F1 adults showed comparable symptoms of thyroidal disruption with F0 adults. A slight recovery was noted in the F2 generation, although F2 larvae still exhibited thyroid disruption and synthesized excessive T4. Our results suggested that the offspring suffered more severe dysfunction of the thyroidal axis albeit without direct exposure. This study provided the first molecular insight about PFBS toxicology on the thyroid, beneficial to both human and environmental risk assessment.


Assuntos
Disruptores Endócrinos , Oryzias , Poluentes Químicos da Água , Animais , Feminino , Estágios do Ciclo de Vida , Glândula Tireoide
6.
Artigo em Inglês | MEDLINE | ID: mdl-29567411

RESUMO

Lamin is an intermediate protein underlying the nuclear envelope and it plays a key role in maintaining the integrity of the nucleus. A defect in the processing of its precursor by a metalloprotease, ZMPSTE24, results in the accumulation of farnesylated prelamin in the nucleus and causes various diseases, including Hutchinson-Gilford progeria syndrome (HGPS). However, the role of lamin processing is unclear in fish species. Here, we generated zmpste24-deficient medaka and evaluated their phenotype. Unlike humans and mice, homozygous mutants did not show growth defects or lifespan shortening, despite lamin precursor accumulation. Gonadosomatic indices, blood glucose levels, and regenerative capacity of fins were similar in 1-year-old mutants and their wild-type (WT) siblings. Histological examination showed that the muscles, subcutaneous fat tissues, and gonads were normal in the mutants at the age of 1 year. However, the mutants showed hypersensitivity to X-ray irradiation, although p53target genes, p21 and mdm2, were induced 6 h after irradiation. Immunostaining of primary cultured cells from caudal fins and visualization of nuclei using H2B-GFP fusion proteins revealed an abnormal nuclear shape in the mutants both in vitro and in vivo. The telomere lengths were significantly shorter in the mutants compared to WT. Taken together, these results suggest that zmpste24-deficient medaka phenocopied HGPS only partially and that abnormal nuclear morphology and lifespan shortening are two independent events in vertebrates.


Assuntos
Núcleo Celular/patologia , Modelos Animais de Doenças , Proteínas de Peixes/deficiência , Proteínas de Membrana/deficiência , Metaloendopeptidases/deficiência , Oryzias/genética , Progéria/patologia , Nadadeiras de Animais/enzimologia , Nadadeiras de Animais/patologia , Nadadeiras de Animais/efeitos da radiação , Animais , Animais Geneticamente Modificados , Núcleo Celular/enzimologia , Núcleo Celular/efeitos da radiação , Forma do Núcleo Celular/efeitos da radiação , Células Cultivadas , Códon sem Sentido , Feminino , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Heterozigoto , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Oryzias/metabolismo , Progéria/enzimologia , Progéria/genética , Tolerância a Radiação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sobrevida , Encurtamento do Telômero/efeitos da radiação
7.
Ecotoxicol Environ Saf ; 156: 34-40, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29525683

RESUMO

Selenium (Se) is an essential element and its biological activity is related to its speciation. It is also well-known that in excess it can cause teratogenesis in fish and birds. In this study we compared dietary toxicity of elemental selenium nanoparticles (SeNPs) with selenite and selenomethionine (Se-Met). Japanese medaka (Oryzias latipes) was used as a laboratory model to determine Se effects on adults and their offspring. Adult females were individually exposed using a dry diet fortified with 0, 10 or 20 µg/g of the three Se species for 7 days and then allowed to breed for 3 days. Fertilization rate and the proportion of malformed offspring were examined. The three Se diets led to significant increase in maternal tissue Se concentration in the order of Se-Met >>selenite > SeNP. However, in terms of proportion of malformed offspring, the effect of Se-Met = selenite > SeNP. The malformations included pericardial edema and craniofacial changes, which were typical for Se toxicity. The mismatch of maternal ovary Se concentration and proportion of malformed offspring suggested total Se concentration is a poor predictor of toxicity and teratogenesis. Comparing expression of four genes related to oxidative stress in maternal tissue also showed that there were significant differences in expression patterns between three Se diets in the order of selenite = SeNP > Se-Met. Our results showed that SeNPs cause similar toxicity as other Se species but require further study to elucidate the underlying mechanism.


Assuntos
Anormalidades Induzidas por Medicamentos , Exposição Dietética , Exposição Materna , Nanopartículas , Selênio/toxicidade , Anormalidades Induzidas por Medicamentos/genética , Anormalidades Induzidas por Medicamentos/metabolismo , Animais , Feminino , Oryzias/genética , Oryzias/metabolismo , Estresse Oxidativo , Ácido Selenioso/toxicidade , Selenometionina/toxicidade
8.
Fish Shellfish Immunol ; 70: 260-269, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28882797

RESUMO

Growing evidence suggests that the immune system of teleost is vulnerable to xenoestrogens, which are ubiquitous in the marine environment. This study detected and identified the major circulatory immune proteins deregulated by 17α-ethinylestradiol (EE2), which may be linked to fish susceptibility to pathogens in the marine medaka, Oryzias melastigma. Fish immune competence was determined using a host resistance assay to pathogenic bacteria Edwardsiella tarda. Females were consistently more susceptible to infection-induced mortality than males. Exposure to EE2 could narrow the sex gap of mortality by increasing infection-induced death in male fish. Proteomic analysis revealed that the major plasma immune proteins of adult fish were highly sexually dimorphic. EE2 induced pronounced sex-specific changes in the plasma proteome, with the male plasma composition clearly becoming "feminised". Male plasma was found to contain a higher level of fibrinogens, WAP63 and ependymin-2-like protein, which are involved in coagulation, inflammation and regeneration. For the first time, we demonstrated that expression of C1q subunit B (C1Q), an initiating factor of the classical complement pathway, was higher in males and was suppressed in both sexes in response to EE2 and bacterial challenge. Moreover, cleavage and post-translational modification of C3, the central component of the complement system, could be altered by EE2 treatment in males (C3dg down; C3g up). Multiple regression analysis indicated that C1Q is possibly an indicator of fish survival, which warrants further confirmation. The findings support the potential application of plasma immune proteins for prognosis/diagnosis of fish immune competence. Moreover, this study provides the first biochemical basis of the sex-differences in fish immunity and how these differences might be modified by xenoestrogens.


Assuntos
Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/imunologia , Estrogênios/metabolismo , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Oryzias/genética , Oryzias/imunologia , Animais , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Etinilestradiol/metabolismo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Masculino , Proteômica
10.
Aquat Toxicol ; 183: 135-143, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28063342

RESUMO

3,3'-Diindolylmethane (DIM) has been promoted as an effective chemopreventive and antifouling additive. However, the concurrent risks or side effects of DIM are not fully understood, especially on tissues responsive to estrogen. Therefore, this study employed marine medaka (Oryzias melastigma) as a test model to evaluate relative safety and explore mechanisms of toxic action of DIM on development and function of gonad after chronic (28days) aqueous exposure to relatively low doses (0µg/L or 8.5µg/L). Integration of comprehensive toxicogenomic analysis at the transcriptome and proteome levels with apical endpoints, such as production of eggs and swimming performance of larvae, elucidated the molecular linkage in gonad from bottom up along the reproductive adverse outcome pathway. A series of sequential changes at the transcript and protein levels were linked to lesser fecundity and viability of larvae exposed to DIM. Anomalous production of vitellogenin (VTG) and eggshell proteins in testis confirmed the estrogenic potency of DIM. In the ovary, although storage of VTG was greater, lesser expressions of cathepsin enzymes blocked cleavage and incorporation of VTG into oocytes as yolk, which acted together with lower eggshell proteins to inhibit maturation of primary oocyte and thus contributed to impairment of fecundity. Overall, this study demonstrated that exposure to DIM impaired reproductive fitness. Diverse molecular initiating changes in gonads were linked to apical endpoints that could be used in assessment of risks posed by DIM on gametogenesis. In combination with chemical stability and potent endocrine disruption, the results of this study can inform decisions about the use of DIM either as chemopreventive or antifouling agent.


Assuntos
Anticarcinógenos/toxicidade , Desinfetantes/toxicidade , Disruptores Endócrinos/toxicidade , Indóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Proteínas do Ovo/metabolismo , Feminino , Fertilidade/efeitos dos fármacos , Proteínas de Peixes/metabolismo , Larva/efeitos dos fármacos , Larva/fisiologia , Masculino , Oryzias/fisiologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Reprodução/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Vitelogeninas/metabolismo
11.
Environ Sci Pollut Res Int ; 24(36): 27687-27701, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27473621

RESUMO

Many anthropogenic pollutants in coastal marine environments can induce immune impairments in wild fish and reduce their survival fitness. There is a pressing need to establish sensitive and high throughput in vivo tools to systematically evaluate the immunosuppressive effects of contaminants in marine teleosts. This study reviewed a battery of in vivo immune function detection technologies established for different biological hierarchies at molecular (immune function pathways and genes by next generation sequencing (NGS)), cellular (leukocytes profiles by flow cytometry), tissues/organ system (whole adult histo-array), and organism (host resistance assays (HRAs)) levels, to assess the immune competence of marine medaka Oryzias melastigma. This approach enables a holistic assessment of fish immune competence under different chemical exposure or environmental scenarios. The data obtained will also be useful to unravel the underlying immunotoxic mechanisms. Intriguingly, NGS analysis of hepatic immune gene expression profiles (male > female) are in support of the bacterial HRA findings, in which infection-induced mortality was consistently higher in females than in males. As such, reproductive stages and gender-specific responses must be taken into consideration when assessing the risk of immunotoxicants in the aquatic environment. The distinct phenotypic sexual dimorphism and short generation time (3 months) of marine medaka offer additional advantages for sex-related immunotoxicological investigation.


Assuntos
Imunotoxinas/toxicidade , Oryzias/imunologia , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Fígado/metabolismo , Masculino , Oryzias/genética , Caracteres Sexuais , Transcriptoma
12.
Environ Sci Technol ; 51(3): 1840-1847, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28026967

RESUMO

Environmental pollutants are capable of concomitantly inducing diverse toxic effects. However, it is largely unknown which effects are directly induced and which effects are secondary, thus calling for definitive identification of the initiating molecular event for a pollutant to elucidate the mechanism of toxicity. In the present study, affinity pull-down assays were used to identify target proteins for 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), a costal pollutant of emerging concern, in various tissues (e.g., brain, liver, plasma, and gonad) from marine medaka (Oryzias melastigma) and zebrafish (Danio rerio). Pull-down results showed that, in male and female brains from medaka and zebrafish, DCOIT had a consistently high affinity for G protein alpha subunits (Gα), suggesting the targeted effects of DCOIT on signaling transduction from G protein-coupled receptors (GPCRs) and an extrapolatable mode of action in teleost brains. Validation using recombinant proteins and molecular docking analysis confirmed that binding of DCOIT to Gα protein competitively inhibited its activation by substrate. Considering the involvement of GPCRs in the regulation of myriad biological processes, including the hypothalamus-pituitary-gonadal-liver axis, binding of DCOIT to upstream Gα proteins in the brain may provide a plausible explanation for the diversity of toxic effects resulting from DCOIT challenge, especially abnormal hormonal production through the mitogen-activated protein kinase pathway. A new mechanism of action based on GPCR signaling is thus hypothesized for endocrine disrupting chemicals and warrants further research to clearly elucidate the link between GPCR signaling and endocrine disruption.


Assuntos
Oryzias , Tiazóis/toxicidade , Animais , Disruptores Endócrinos/toxicidade , Sistema Endócrino/efeitos dos fármacos , Gônadas/efeitos dos fármacos , Simulação de Acoplamento Molecular
13.
J Exp Zool B Mol Dev Evol ; 326(7): 387-393, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27966251

RESUMO

In this study, the identification of the whole Hox gene clusters (46 Hox genes) in the marine medaka Oryzias melastigma was investigated using genome assembly and RNA-seq information. Moreover, the gene loss events of Hox gene clusters, which may occur during fish evolution, were examined for a better understanding of the evolutionary status of the gene lost events of the Hox gene cluster across fish species, particularly in the genus Oryzias.


Assuntos
Genes Homeobox , Oryzias/genética , Animais , Evolução Biológica , Genoma , Família Multigênica , Análise de Sequência de RNA , Transcriptoma
14.
Environ Sci Technol ; 50(8): 4492-501, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27035644

RESUMO

In this study, marine medaka (Oryzias melastigma) were chronically exposed for 28 days to environmentally realistic concentrations of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) (0, 0.76, 2.45, and 9.86 µg/L), the active ingredient in commercial antifouling agent SeaNine 211. Alterations of the hypothalamus-pituitary-gonadal-liver (HPGL) axis were investigated across diverse levels of biological organization to reveal the underlying mechanisms of its endocrine disruptive effects. Gene transcription analysis showed that DCOIT had positive regulatory effects mainly in male HPGL axis with lesser extent in females. The stimulated steroidogenic activities resulted in increased concentrations of steroid hormones, including estradiol (E2), testosterone (T), and 11-KT-testosterone (11-KT), in the plasma of both sexes, leading to an imbalance in hormone homeostasis and increased E2/T ratio. The relatively estrogenic intracellular environment in both sexes induced the hepatic synthesis and increased the liver and plasma content of vitellogenin (VTG) or choriogenin. Furthermore, parental exposure to DCOIT transgenerationally impaired the viability of offspring, as supported by a decrease in hatching and swimming activity. Overall, the present results elucidated the estrogenic mechanisms along HPGL axis for the endocrine disruptive effects of DCOIT. The reproductive impairments of DCOIT at environmentally realistic concentrations highlights the need for more comprehensive investigations of its potential ecological risks.


Assuntos
Disruptores Endócrinos/toxicidade , Gônadas/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Oryzias , Hipófise/efeitos dos fármacos , Tiazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Disruptores Endócrinos/metabolismo , Sistema Endócrino/efeitos dos fármacos , Estradiol/sangue , Feminino , Masculino , Oryzias/sangue , Oryzias/metabolismo , Reprodução/efeitos dos fármacos , Testosterona/sangue , Tiazóis/metabolismo , Vitelogeninas/sangue , Poluentes Químicos da Água/metabolismo
15.
Chem Res Toxicol ; 29(6): 1020-8, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27092574

RESUMO

Despite being proposed as a promising antifouling and chemopreventive agent, the environmental risks of 3,3'-diindolylmethane (DIM) are scarcely investigated. Therefore, this study used adult marine medaka (Oryzias melastigma) as a model organism to examine the toxicological effects and underlying mechanism of DIM throughout the hypothalamus-pituitary-gonadal-liver (HPGL) axis following 28 days of exposure to low DIM concentrations (0 and 8.46 µg/L). The results showed that altered gene transcription in the hypothalamus, pituitary, and gonads contributed to the great imbalance in hormone homeostasis. The lowered estradiol (E2)/testosterone (T) and E2/11-keto-testosterone (11-KT) ratios in female plasma resulted in decreased synthesis and levels of vitellogenin (VTG) and choriogenin in the liver and plasma, and vice versa in males. Subsequently, VTG and choriogenin deficiency blocked the reproductive function of the ovary as indicated by decreased fecundity and offspring viability, whereas in male medaka, DIM mainly targeted the liver and induced severe vacuolization. Proteomic profiling of plasma revealed that the sex-specific susceptibility to DIM could be attributed to the increased detoxification and oxidative defense in males. Overall, this study identified the endocrine disruption and reproductive impairment potency of DIM and first elucidated its mechanisms of action in medaka. The differential responses to DIM (estrogenic activities in the male but antiestrogenic activities in the female) provided sensitive biomarkers characteristic of each sex. Considering the chemical stability and potent endocrine disturbance at low concentration, the application of DIM either as an antifouling or chemopreventive agent should be approached with caution in marine environments.


Assuntos
Incrustação Biológica/prevenção & controle , Disruptores Endócrinos/toxicidade , Gônadas/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Indóis/toxicidade , Fígado/efeitos dos fármacos , Oryzias/metabolismo , Hipófise/efeitos dos fármacos , Animais , Proteínas do Ovo/sangue , Proteínas do Ovo/metabolismo , Disruptores Endócrinos/metabolismo , Feminino , Gônadas/patologia , Hipotálamo/patologia , Indóis/química , Fígado/patologia , Masculino , Oryzias/sangue , Oryzias/crescimento & desenvolvimento , Hipófise/patologia , Precursores de Proteínas/sangue , Precursores de Proteínas/metabolismo , Vitelogeninas/sangue , Vitelogeninas/metabolismo
16.
Mar Environ Res ; 113: 141-52, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26716363

RESUMO

In recent years, the marine medaka (Oryzias melastigma), also known as the Indian medaka or brackish medaka, has been recognized as a model fish species for ecotoxicology and environmental research in the Asian region. O. melastigma has several promising features for research, which include a short generation period (3-4 months), daily spawning, small size (3-4 cm), transparent embryos, sexual dimorphism, and ease of mass culture in the laboratory. There have been extensive transcriptome and genome studies on the marine medaka in the past decade. Such omics data can be useful in understanding the signal transduction pathways of small teleosts in response to environmental stressors. An omics-integrated approach in the study of the marine medaka is important for strengthening its role as a small fish model for marine environmental studies. In this review, we present current omics information about the marine medaka and discuss its potential applications in the study of various molecular pathways that can be targets of marine environmental stressors, such as chemical pollutants. We believe that this review will encourage the use of this small fish as a model species in marine environmental research.


Assuntos
Monitoramento Ambiental/métodos , Genômica , Oryzias/genética , Poluentes Químicos da Água/toxicidade , Animais , Transcriptoma
17.
Artigo em Inglês | MEDLINE | ID: mdl-26456900

RESUMO

Recent cross-generational studies in teleost fish have raised the awareness that high levels of benzo[a]pyrene (BaP) could affect skeletal integrity in the directly exposed F0 and their F1-F2. However, no further details were provided about the causes for abnormalities on the molecular and cellular level and the persistence of such sub-organismal impairments at the transgenerational scale (beyond F2). Adult Oryzias latipes were exposed to 1µg/L BaP for 21days. The F1-F3 were examined for skeletal deformities, histopathological alterations of vertebral bodies and differential expression of key genes of bone metabolism. Significant increase of dorsal-ventral vertebral compression was evident in ancestrally exposed larvae. Histopathological analysis revealed abnormal loss of notochord sheath, a lack of notochord epithelial integrity, reduced bone tissue and decreased osteoblast abundance. A significant downregulation of ATF4 and/or osterix and a high biological variability of COL10, coupled with a significant deregulation of SOX9a/b in the F1-F3 suggest that ancestral BaP exposure most likely perturbed chordoblasts, chondroblast and osteoblast differentiation, resulting in defective notochord sheath repair and rendering the vertebral column more vulnerable to compression. The present findings provide novel molecular and cellular insights into BaP-induced transgenerational bone impairment in the unexposed F3. From the ecological risk assessment perspective, BaP needs to be regarded as a transgenerational skeletal toxicant, which exerts a far-reaching impact on fish survival and fitness. Given that basic mechanisms of cartilage/bone formation are conserved between medaka and mammals, the results may also shed light on the potential transgenerational effect of BaP on the genesis of skeletal diseases in humans.


Assuntos
Benzo(a)pireno/efeitos adversos , Oryzias/fisiologia , Osteogênese/efeitos dos fármacos , Animais , Cartilagem/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/fisiologia , Poluentes Químicos da Água/efeitos adversos
18.
Mar Genomics ; 24 Pt 3: 255-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26272172

RESUMO

We sequenced the whole transcriptome of the 24h-old larval stage of the marine medaka Oryzias melastigma using Illumina RNA-seq. De novo assembly of 64,914,324 raw reads was performed using Trinity, resulting in 144,953 contigs. TransDecoder found 58,246 candidate coding contigs with homology to other species based on BLAST analysis. Functional gene annotation was performed by GO, KEGG pathway, and COG analyses. We determined an expressed gene catalog for O. melastigma for gene information-based environmental genomic and ecotoxicogenomic research. This information will serve as a resource for elucidating the molecular mechanisms underlying the response of O. melastigma to environmental stresses and chemicals.


Assuntos
Oryzias/metabolismo , Transcriptoma , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/fisiologia , Larva/metabolismo , Técnicas de Amplificação de Ácido Nucleico , Oryzias/genética
19.
Biomaterials ; 52: 148-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25818421

RESUMO

Dysregulated microRNAs in osteoclasts could cause many skeletal diseases. The therapeutic manipulation of these pathogenic microRNAs necessitates novel, efficient delivery systems to facilitate microRNAs modulators targeting osteoclasts with minimal off-target effects. Bone resorption surfaces characterized by highly crystallized hydroxyapatite are dominantly occupied by osteoclasts. Considering that the eight repeating sequences of aspartate (D-Asp8) could preferably bind to highly crystallized hydroxyapatite, we developed a targeting system by conjugating D-Asp8 peptide with liposome for delivering microRNA modulators specifically to bone resorption surfaces and subsequently encapsulated antagomir-148a (a microRNA modulator suppressing the osteoclastogenic miR-148a), i.e. (D-Asp8)-liposome-antagomir-148a. Our results demonstrated that D-Asp8 could facilitate the enrichment of antagomir-148a and the subsequent down-regulation of miR-148a in osteoclasts in vivo, resulting in reduced bone resorption and attenuated deterioration of trabecular architecture in osteoporotic mice. Mechanistically, the osteoclast-targeted delivery depended on the interaction between bone resorption surfaces and D-Asp8. No detectable liver and kidney toxicity was found in mice after single/multiple dose(s) treatment of (D-Asp8)-liposome-antagomir-148a. These results indicated that (D-Asp8)-liposome as a promising osteoclast-targeting delivery system could facilitate clinical translation of microRNA modulators in treating those osteoclast-dysfunction-induced skeletal diseases.


Assuntos
Reabsorção Óssea/terapia , Regulação para Baixo/efeitos dos fármacos , Lipossomos/química , MicroRNAs/genética , Oligonucleotídeos/administração & dosagem , Osteoclastos/metabolismo , Peptídeos/química , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Sistemas de Liberação de Medicamentos , Feminino , Terapia Genética/métodos , Lipossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos/genética , Oligonucleotídeos/uso terapêutico , Osteoclastos/citologia , Osteoclastos/patologia , Peptídeos/metabolismo
20.
Environ Sci Technol ; 49(3): 1851-9, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25555223

RESUMO

The pollution of antifoulant SeaNine 211, with 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) as active ingredient, in coastal environment raises concerns on its adverse effects, including endocrine disruption and impairment of reproductive function in marine organisms. In the present study, we investigated the hepatic protein expression profiles of both male and female marine medaka (Oryzias melastigma) exposed to low concentrations of DCOIT at 2.55 µg/L (0.009 µM) or butenolide, a promising antifouling agent, at 2.31 µg/L (0.012 µM) for 28 days. The results showed that proteins involved in phase I (CYP450 enzyme) metabolism, phase II (UDPGT and GST) conjugation as well as mobilization of retinoid storage, an effective nonenzymatic antioxidant, were consistently up-regulated, possibly facilitating the accelerated detoxification of butenolide. Increased synthesis of bile acid would promote the immediate excretion of butenolide metabolites. Activation of fatty acid ß-oxidation and ATP synthesis were consistent with elevated energy consumption for butenolide degradation and excretion. However, DCOIT did not significantly affect the detoxification system of male medaka, but induced a marked increase of vitellogenin (VTG) by 2.3-fold in the liver of male medaka, suggesting that there is estrogenic activity of DCOIT in endocrine disruption. Overall, this study identified the molecular mechanisms and provided sensitive biomarkers characteristic of butenolide and DCOIT in the liver of marine medaka. The low concentrations of butenolide and DCOIT used in the exposure regimes highlight the needs for systematic evaluation of their environmental risk. In addition, the potent estrogenic activity of DCOIT should be considered in the continued applications of SeaNine 211.


Assuntos
4-Butirolactona/análogos & derivados , Disruptores Endócrinos/toxicidade , Fígado/efeitos dos fármacos , Oryzias/metabolismo , Tiazóis/toxicidade , Poluentes Químicos da Água/toxicidade , 4-Butirolactona/toxicidade , Animais , Biomarcadores/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Glucuronosiltransferase/metabolismo , Glutationa Transferase/metabolismo , Fígado/metabolismo , Masculino , Proteômica , Vitelogeninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...