Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
HGG Adv ; 3(3): 100108, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35599849

RESUMO

Genome-wide sequencing (GWS) is a standard of care for diagnosis of suspected genetic disorders, but the proportion of patients found to have pathogenic or likely pathogenic variants ranges from less than 30% to more than 60% in reported studies. It has been suggested that the diagnostic rate can be improved by interpreting genomic variants in the context of each affected individual's full clinical picture and by regular follow-up and reinterpretation of GWS laboratory results. Trio exome sequencing was performed in 415 families and trio genome sequencing in 85 families in the CAUSES study. The variants observed were interpreted by a multidisciplinary team including laboratory geneticists, bioinformaticians, clinical geneticists, genetic counselors, pediatric subspecialists, and the referring physician, and independently by a clinical laboratory using standard American College of Medical Genetics and Genomics (ACMG) criteria. Individuals were followed for an average of 5.1 years after testing, with clinical reassessment and reinterpretation of the GWS results as necessary. The multidisciplinary team established a diagnosis of genetic disease in 43.0% of the families at the time of initial GWS interpretation, and longitudinal follow-up and reinterpretation of GWS results produced new diagnoses in 17.2% of families whose initial GWS interpretation was uninformative or uncertain. Reinterpretation also resulted in rescinding a diagnosis in four families (1.9%). Of the families studied, 33.6% had ACMG pathogenic or likely pathogenic variants related to the clinical indication. Close collaboration among clinical geneticists, genetic counselors, laboratory geneticists, bioinformaticians, and individuals' primary physicians, with ongoing follow-up, reanalysis, and reinterpretation over time, can improve the clinical value of GWS.

2.
Clin Transl Gastroenterol ; 12(8): e00397, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34397043

RESUMO

INTRODUCTION: Uninformative germline genetic testing presents a challenge to clinical management for patients suspected to have Lynch syndrome, a cancer predisposition syndrome caused by germline variants in the mismatch repair (MMR) genes or EPCAM. METHODS: Among a consecutive series of MMR-deficient Lynch syndrome spectrum cancers identified through immunohistochemistry-based tumor screening, we investigated the clinical utility of tumor sequencing for the molecular diagnosis and management of suspected Lynch syndrome families. MLH1-deficient colorectal cancers were prescreened for BRAF V600E before referral for genetic counseling. Microsatellite instability, MLH1 promoter hypermethylation, and somatic and germline genetic variants in the MMR genes were assessed according to an established clinical protocol. RESULTS: Eighty-four individuals with primarily colorectal (62%) and endometrial (31%) cancers received tumor-normal sequencing as part of routine clinical genetic assessment. Overall, 27% received a molecular diagnosis of Lynch syndrome. Most of the MLH1-deficient tumors were more likely of sporadic origin, mediated by MLH1 promoter hypermethylation in 54% and double somatic genetic alterations in MLH1 (17%). MSH2-deficient, MSH6-deficient, and/or PMS2-deficient tumors could be attributed to pathogenic germline variants in 37% and double somatic events in 28%. Notably, tumor sequencing could explain 49% of cases without causal germline variants, somatic MLH1 promoter hypermethylation, or somatic variants in BRAF. DISCUSSION: Our findings support the integration of tumor sequencing into current Lynch syndrome screening programs to improve clinical management for individuals whose germline testing is uninformative.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA , Mutação em Linhagem Germinativa , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Metilação de DNA , Molécula de Adesão da Célula Epitelial/genética , Feminino , Humanos , Masculino , Instabilidade de Microssatélites , Pessoa de Meia-Idade , Proteína 1 Homóloga a MutL/genética
3.
Genet Med ; 23(10): 1933-1943, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34172899

RESUMO

PURPOSE: Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo. METHODS: Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants. Sequencing approaches ranged from disease-specific panels to genome sequencing. We generated loss-of-function alleles in zebrafish. RESULTS: We identify ten new and four known biallelic missense variants in KARS1 presenting with a moderate-to-severe developmental delay, progressive neurological and neurosensory abnormalities, and variable white matter involvement. We describe novel KARS1-associated signs such as autism, hyperactive behavior, pontine hypoplasia, and cerebellar atrophy with prevalent vermian involvement. Loss of kars1 leads to upregulation of p53, tissue-specific apoptosis, and downregulation of neurodevelopmental related genes, recapitulating key tissue-specific disease phenotypes of patients. Inhibition of p53 rescued several defects of kars1-/- knockouts. CONCLUSION: Our work delineates the clinical spectrum associated with KARS1 defects and provides a novel animal model for KARS1-related human diseases revealing p53 signaling components as potential therapeutic targets.


Assuntos
Perda Auditiva , Lisina-tRNA Ligase/genética , Transtornos do Neurodesenvolvimento , Alelos , Animais , Modelos Animais de Doenças , Perda Auditiva/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Peixe-Zebra/genética
4.
Clin Genet ; 95(5): 607-614, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30859550

RESUMO

Crisponi/cold-induced sweating syndrome (CS/CISS) is a rare autosomal recessive disorder characterized by a complex phenotype (hyperthermia and feeding difficulties in the neonatal period, followed by scoliosis and paradoxical sweating induced by cold since early childhood) and a high neonatal lethality. CS/CISS is a genetically heterogeneous disorder caused by mutations in CRLF1 (CS/CISS1), CLCF1 (CS/CISS2) and KLHL7 (CS/CISS-like). Here, a whole exome sequencing approach in individuals with CS/CISS-like phenotype with unknown molecular defect revealed unpredicted alternative diagnoses. This approach identified putative pathogenic variations in NALCN, MAGEL2 and SCN2A. They were already found implicated in the pathogenesis of other syndromes, respectively the congenital contractures of the limbs and face, hypotonia, and developmental delay syndrome, the Schaaf-Yang syndrome, and the early infantile epileptic encephalopathy-11 syndrome. These results suggest a high neonatal phenotypic overlap among these disorders and will be very helpful for clinicians. Genetic analysis of these genes should be considered for those cases with a suspected CS/CISS during neonatal period who were tested as mutation negative in the known CS/CISS genes, because an expedited and corrected diagnosis can improve patient management and can provide a specific clinical follow-up.


Assuntos
Sequenciamento do Exoma , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Hiperidrose/diagnóstico , Hiperidrose/genética , Trismo/congênito , Morte Súbita , Fácies , Feminino , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Trismo/diagnóstico , Trismo/genética
5.
Cureus ; 9(7): e1458, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28929041

RESUMO

Ataxia telangiectasia mutated (ATM) gene mutations may confer increased sensitivity to ionizing radiation and increased risk of late toxicity for cancer patients. We present the case of a 55-year-old female treated with adjuvant breast and regional nodal radiation following lumpectomy and axillary lymph node dissection for stage II invasive ductal carcinoma of the breast. She developed severe telangiectasia, fibrosis, induration, chest wall pain (with evidence of rib fractures on imaging), and painful limitation in her range of motion at the shoulder. She was subsequently found to have a likely pathogenic germline ATM gene mutation. At relapse, she elected to pursue systemic therapy alone for intracranial metastases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...