Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Brain Stimul ; 17(3): 636-647, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734066

RESUMO

BACKGROUND: Transcranial ultrasound stimulation (TUS) is a non-invasive brain stimulation technique; when skull aberrations are compensated for, this technique allows, with millimetric accuracy, circumvention of the invasive surgical procedure associated with deep brain stimulation (DBS) and the limited spatial specificity of transcranial magnetic stimulation. OBJECTIVE: /hypothesis: We hypothesize that MR-guided low-power TUS can induce a sustained decrease of tremor power in patients suffering from medically refractive essential tremor. METHODS: The dominant hand only was targeted, and two anatomical sites were sonicated in this exploratory study: the ventral intermediate nucleus of the thalamus (VIM) and the dentato-rubro-thalamic tract (DRT). Patients (N = 9) were equipped with MR-compatible accelerometers attached to their hands to monitor their tremor in real-time during TUS. RESULTS: VIM neurostimulations followed by a low-duty cycle (5 %) DRT stimulation induced a substantial decrease in the tremor power in four patients, with a minimum of 89.9 % reduction when compared with the baseline power a few minutes after the DRT stimulation. The only patient stimulated in the VIM only and with a low duty cycle (5 %) also experienced a sustained reduction of the tremor (up to 93.4 %). Four patients (N = 4) did not respond. The temperature at target was 37.2 ± 1.4 °C compared to 36.8 ± 1.4 °C for a 3 cm away control point. CONCLUSIONS: MR-guided low power TUS can induce a substantial and sustained decrease of tremor power. Follow-up studies need to be conducted to reproduce the effect and better to understand the variability of the response amongst patients. MR thermometry during neurostimulations showed no significant thermal rise, supporting a mechanical effect.

2.
Brain Stimul ; 17(3): 607-615, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670224

RESUMO

As transcranial ultrasound stimulation (TUS) advances as a precise, non-invasive neuromodulatory method, there is a need for consistent reporting standards to enable comparison and reproducibility across studies. To this end, the International Transcranial Ultrasonic Stimulation Safety and Standards Consortium (ITRUSST) formed a subcommittee of experts across several domains to review and suggest standardised reporting parameters for low intensity TUS, resulting in the guide presented here. The scope of the guide is limited to reporting the ultrasound aspects of a study. The guide and supplementary material provide a simple checklist covering the reporting of: (1) the transducer and drive system, (2) the drive system settings, (3) the free field acoustic parameters, (4) the pulse timing parameters, (5) in situ estimates of exposure parameters in the brain, and (6) intensity parameters. Detailed explanations for each of the parameters, including discussions on assumptions, measurements, and calculations, are also provided.

3.
Reg Anesth Pain Med ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508592

RESUMO

BACKGROUND: Radiofrequency ablation (RFA) is a common method for alleviating chronic back pain by targeting and ablating of facet joint sensory nerves. High-intensity focused ultrasound (HIFU) is an emerging, non-invasive, image-guided technology capable of providing thermal tissue ablation. While HIFU shows promise as a potentially superior option for ablating sensory nerves, its efficacy needs validation and comparison with existing methods. METHODS: Nine adult pigs underwent fluoroscopy-guided HIFU ablation of eight lumbar medial branch nerves, with varying acoustic energy levels: 1000 (N=3), 1500 (N=3), or 2000 (N=3) joules (J). An additional three animals underwent standard RFA (two 90 s long lesions at 80°C) of the same eight nerves. Following 2 days of neurobehavioral observation, all 12 animals were sacrificed. The targeted tissue was excised and subjected to macropathology and micropathology, with a primary focus on the medial branch nerves. RESULTS: The percentage of ablated nerves with HIFU was 71%, 86%, and 96% for 1000 J, 1500 J, and 2000 J, respectively. In contrast, RFA achieved a 50% ablation rate. No significant adverse events occurred during the procedure or follow-up period. CONCLUSIONS: These findings suggest that HIFU may be more effective than RFA in inducing thermal necrosis of the nerve.

4.
ArXiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38410648

RESUMO

As transcranial ultrasound stimulation (TUS) advances as a precise, non-invasive neuromodulatory method, there is a need for consistent reporting standards to enable comparison and reproducibility across studies. To this end, the International Transcranial Ultrasonic Stimulation Safety and Standards Consortium (ITRUSST) formed a subcommittee of experts across several domains to review and suggest standardised reporting parameters for low intensity TUS, resulting in the guide presented here. The scope of the guide is limited to reporting the ultrasound aspects of a study. The guide and supplementary material provide a simple checklist covering the reporting of: (1) the transducer and drive system, (2) the drive system settings, (3) the free field acoustic parameters, (4) the pulse timing parameters, (5) in situ estimates of exposure parameters in the brain, and (6) intensity parameters. Detailed explanations for each of the parameters, including discussions on assumptions, measurements, and calculations, are also provided.

5.
Ultrasound Med Biol ; 50(4): 474-483, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38195266

RESUMO

OBJECTIVE: Despite recent improvements in medical imaging, the final diagnosis and biopathologic characterization of breast cancers currently still requires biopsies. Ultrasound is commonly used for clinical examination of breast masses. B-Mode and shear wave elastography (SWE) are already widely used to detect suspicious masses and differentiate benign lesions from cancers. But additional ultrasound modalities such as backscatter tensor imaging (BTI) could provide relevant biomarkers related to tissue organization. Here we describe a 3-D multiparametric ultrasound approach applied to breast carcinomas in the aims of (i) validating the ability of BTI to reveal the underlying organization of collagen fibers and (ii) assessing the complementarity of SWE and BTI to reveal biopathologic features of diagnostic interest. METHODS: Three-dimensional SWE and BTI were performed ex vivo on 64 human breast carcinoma samples using a linear ultrasound probe moved by a set of motors. Here we describe a 3-D multiparametric representation of the breast masses and quantitative measurements combining B-mode, SWE and BTI. RESULTS: Our results reveal for the first time that BTI can capture the orientation of the collagen fibers around tumors. BTI was found to be a relevant marker for assessing cancer stages, revealing a more tangent tissue orientation for in situ carcinomas than for invasive cancers. In invasive cases, the combination of BTI and SWE parameters allowed for classification of invasive tumors with respect to their grade with an accuracy of 95.7%. CONCLUSION: Our results highlight the potential of 3-D multiparametric ultrasound imaging for biopathologic characterization of breast tumors.


Assuntos
Neoplasias da Mama , Técnicas de Imagem por Elasticidade , Feminino , Humanos , Neoplasias da Mama/patologia , Técnicas de Imagem por Elasticidade/métodos , Ultrassonografia Mamária/métodos , Abordagem GRADE , Mama/diagnóstico por imagem , Mama/patologia , Colágeno , Sensibilidade e Especificidade , Reprodutibilidade dos Testes , Diagnóstico Diferencial
6.
Ultrasound Med Biol ; 49(1): 269-277, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36441031

RESUMO

High-intensity focused ultrasound (HIFU) transducer acoustic output can vary over time as a result of an inconsistent power supply, damage to the transducer or deterioration over time. Therefore, easy implementation of a daily quality assurance (DQA) method is of great importance for pre-clinical research and clinical applications. We present here a thermochromic material-based phantom validated by thermal simulations and found to provide repeatable visual power output assessments in fewer than 15 s that are accurate to within 10%. Whereas current available methods such as radiation force balance measurements provide an estimate of the total acoustic power, we explain here that the thermochromic phantom is sensitive to the shape of the acoustic field at focus by changing the aperture of a multi-element transducer with a fixed acoustic power. The proposed phantom allows the end user to visually assess the transducer's functionality without resorting to expensive, time-consuming hydrophone measurements or image analysis.


Assuntos
Terapia por Ultrassom , Imagens de Fantasmas , Transdutores , Acústica , Processamento de Imagem Assistida por Computador
7.
Brain Stimul ; 16(1): 48-55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36549480

RESUMO

Transcranial ultrasound stimulation (TUS) has been shown to be a safe and effective technique for non-invasive superficial and deep brain stimulation. Safe and efficient translation to humans requires estimating the acoustic attenuation of the human skull. Nevertheless, there are no international guidelines for estimating the impact of the skull bone. A tissue independent, arbitrary derating was developed by the U.S. Food and Drug Administration to take into account tissue absorption (0.3 dB/cm-MHz) for diagnostic ultrasound. However, for the case of transcranial ultrasound imaging, the FDA model does not take into account the insertion loss induced by the skull bone, nor the absorption by brain tissue. Therefore, the estimated absorption is overly conservative which could potentially limit TUS applications if the same guidelines were to be adopted. Here we propose a three-layer model including bone absorption to calculate the maximum pressure transmission through the human skull for frequencies ranging between 100 kHz and 1.5 MHz. The calculated pressure transmission decreases with the frequency and the thickness of the bone, with peaks for each thickness corresponding to a multiple of half the wavelength. The 95th percentile maximum transmission was calculated over the accessible surface of 20 human skulls for 12 typical diameters of the ultrasound beam on the skull surface, and varies between 40% and 78%. To facilitate the safe adjustment of the acoustic pressure for short ultrasound pulses, such as transcranial imaging or transcranial ultrasound stimulation, a table summarizes the maximum pressure transmission for each ultrasound beam diameter and each frequency.


Assuntos
Encéfalo , Crânio , Humanos , Crânio/diagnóstico por imagem , Ultrassonografia , Acústica , Cabeça
8.
J Acoust Soc Am ; 152(2): 1003, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36050189

RESUMO

Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.


Assuntos
Benchmarking , Transdutores , Simulação por Computador , Crânio/diagnóstico por imagem , Ultrassonografia/métodos
9.
Ultrasound Med Biol ; 48(9): 1867-1878, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35752513

RESUMO

Tumor growth, similarly to several other pathologies, tends to change the structural orientation of soft tissue fibers, which can become relevant markers for diagnosis. Current diagnosis protocols may require a biopsy for histological analysis, which is an invasive, painful and stressful procedure with a minimum turnaround time of 2 d. Otherwise, diagnosis may involve the use of complex methods with limited availability such as diffusion tensor imaging (magnetic resonance diffusion tensor imaging), which is not widely used in medical practice. Conversely, advanced methodologies in ultrasound imaging such as backscatter tensor imaging (BTI) might become a routine procedure in clinical practice at a limited cost. This method evaluates the local organization of soft tissues based on the spatial coherence of their backscattered ultrasonic echoes. Previous work has proven that BTI applied with matrix probes enables measurement of the orientation of soft tissue fibers, especially in the myocardium. The aims of the study described here were (i) to present for the first time a methodology for performing BTI in a volume on ex vivo human breast tumors using a linear probe and (ii) to display a first proof of concept of the link between BTI measurements and the orientation of collagen fibers.


Assuntos
Neoplasias da Mama , Imagem de Tensor de Difusão , Anisotropia , Neoplasias da Mama/diagnóstico por imagem , Colágeno , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Miocárdio
10.
Adv Exp Med Biol ; 1364: 397-409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508885

RESUMO

Focused ultrasound holds great promise in therapy for its ability to target non-invasively deep seated tissues with non-ionizing therapeutic beams. Nevertheless, brain applications have been hampered for decades by the presence of the skull. The skull indeed strongly reflects, refracts and absorbs ultrasound, which defocuses the therapeutic ultrasound beams. In this chapter, we will first show how the structure of the skull impacts the ultrasound beams and how it narrows the frequency range that can be envisioned for transcranial therapy. We will then introduce different methods that have been developed and optimized to compensate the defocusing effect of the bone. Finally, we will provide an overview of past, current and future treatments of brain disorders.


Assuntos
Encefalopatias , Terapia por Ultrassom , Encéfalo/diagnóstico por imagem , Encefalopatias/diagnóstico por imagem , Encefalopatias/terapia , Humanos , Crânio/diagnóstico por imagem , Ultrassonografia
11.
Pain Med ; 23(1): 67-75, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34534337

RESUMO

OBJECTIVE: To investigate the safety and feasibility of a fluoroscopy-guided, high-intensity focused ultrasound system for zygapophyseal joint denervation as a treatment for chronic low back pain. METHODS: The clinical pilot study was performed on 10 participants diagnosed with lumbar zygapophyseal joint syndrome. Each participant had a documented positive response to a diagnostic block or a previous, clinically beneficial radiofrequency ablation. For a descriptive study, the primary outcome was the safety question. All device- or procedure-related adverse events were collected. Secondary outcome variables included the average numeric rating scale for pain, the Roland-Morris Disability Questionnaire, the Brief Pain Inventory, the Patient Global Impression of Change, the morphine equivalent dose, and the finding of the neurological examination. RESULTS: All participants tolerated the procedure well with no significant device- or procedure-related adverse events; there was one episode of transient pain during the procedure. The average numeric rating scale score for pain decreased from 6.2 at baseline to 2.1 (n = 10) after 1 month, 4.9 (n = 9) after 3 months, 3.0 (n = 8) after 6 months, and 3.0 (n = 6) after 12 months. The ratio of participants who were considered a treatment success was 90% at 1 month, 50% at 3 months, 60% at 6 months, and 40% at 12 months. CONCLUSIONS: The first clinical pilot study using a noninvasive, fluoroscopy-guided, high-intensity focused ultrasound lumbar zygapophyseal neurotomy resulted in no significant device- or procedure-related adverse events and achieved clinical success comparable with that of routine radiofrequency ablation.


Assuntos
Dor Lombar , Articulação Zigapofisária , Denervação/métodos , Fluoroscopia , Humanos , Dor Lombar/cirurgia , Vértebras Lombares/cirurgia , Projetos Piloto , Resultado do Tratamento , Articulação Zigapofisária/cirurgia
12.
Sci Adv ; 7(51): eabg7700, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34910510

RESUMO

Credit assignment is the association of specific instances of reward to the specific events, such as a particular choice, that caused them. Without credit assignment, choice values reflect an approximate estimate of how good the environment was when the choice was made­the global reward state­rather than exactly which outcome the choice caused. Combined transcranial ultrasound stimulation (TUS) and functional magnetic resonance imaging in macaques demonstrate credit assignment­related activity in prefrontal area 47/12o, and when this signal was disrupted with TUS, choice value representations across the brain were impaired. As a consequence, behavior was no longer guided by choice value, and decision-making was poorer. By contrast, global reward state­related activity in the adjacent anterior insula remained intact and determined decision-making after prefrontal disruption.

13.
Neuroimage ; 235: 118017, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794355

RESUMO

Brain perturbation studies allow detailed causal inferences of behavioral and neural processes. Because the combination of brain perturbation methods and neural measurement techniques is inherently challenging, research in humans has predominantly focused on non-invasive, indirect brain perturbations, or neurological lesion studies. Non-human primates have been indispensable as a neurobiological system that is highly similar to humans while simultaneously being more experimentally tractable, allowing visualization of the functional and structural impact of systematic brain perturbation. This review considers the state of the art in non-human primate brain perturbation with a focus on approaches that can be combined with neuroimaging. We consider both non-reversible (lesions) and reversible or temporary perturbations such as electrical, pharmacological, optical, optogenetic, chemogenetic, pathway-selective, and ultrasound based interference methods. Method-specific considerations from the research and development community are offered to facilitate research in this field and support further innovations. We conclude by identifying novel avenues for further research and innovation and by highlighting the clinical translational potential of the methods.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem/métodos , Animais , Humanos , Optogenética , Primatas
14.
Artigo em Inglês | MEDLINE | ID: mdl-33651688

RESUMO

Only one high-intensity focused ultrasound device has been clinically approved for transcranial brain surgery at the time of writing. The device operates within 650 and 720 kHz and corrects the phase distortions induced by the skull of each patient using a multielement phased array. Phase correction is estimated adaptively using a proprietary algorithm based on computed-tomography (CT) images of the patient's skull. In this article, we assess the performance of the phase correction computed by the clinical device and compare it to: 1) the correction obtained with a previously validated full-wave simulation algorithm using an open-source pseudo-spectral toolbox and 2) a hydrophone-based correction performed invasively to measure the aberrations induced by the skull at 650 kHz. For the full-wave simulation, three different mappings between CT Hounsfield units and the longitudinal speed of sound inside the skull were tested. All methods are compared with the exact same setup due to transfer matrices acquired with the clinical system for N = 5 skulls and T = 2 different targets for each skull. We show that the clinical ray-tracing software and the full-wave simulation restore, respectively, 84% ± 5% and 86% ± 5% of the pressure obtained with hydrophone-based correction for targets located in central brain regions. On the second target (off-center), we also report that the performance of both algorithms degrades when the average incident angles of the acoustic beam at the skull surface increase. When incident angles are higher than 20°, the restored pressure drops below 75% of the pressure restored with hydrophone-based correction.


Assuntos
Encéfalo , Crânio , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Ultrassonografia
15.
EJVES Vasc Forum ; 50: 1-5, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33377135

RESUMO

INTRODUCTION: Endovenous techniques such as ultrasound guided foam sclerotherapy, thermal methods, or glues are generally recommended to occlude incompetent veins. However, these methods can be technically challenging and risky for patients with severe atrophic skin disorders like lipodermatosclerosis or atrophie blanche. High intensity focused ultrasound (HIFU), which has been shown to coagulate and occlude veins successfully, may offer an alternative method. This case report details ultrasound guided HIFU to occlude non-invasively a refluxing perforator vein causing active ulcers. REPORT: A 95 year old man presented to the Institute for Functional Phlebology (Melk, Austria) with painful recurrent ulcers in his left medial calf. His limb was scored C2,3,4a, b,6, Ep, Ap, Pr,18 according to the Clinical, Etiology, Anatomic, Pathophysiology (CEAP) classification. Lower limb ultrasound revealed a refluxing posterior tibial perforating vein, measuring 2.7 mm in diameter at the level of the fascia. Extracorporeal HIFU pulses were delivered to this vein with the Sonovein device (Theraclion, Malakoff, France). Sonication was applied for eight seconds at a mean acoustic power of 80 W. The patient was followed up for three months post-treatment and occlusion was evaluated by duplex ultrasound. There were no complications during treatment or follow up. Three months after the treatment, reflux was abolished and the two initially active ulcers had healed. DISCUSSION: Although this is an early report, this study shows that HIFU can be successful in ablation of incompetent perforator veins in the treatment of venous leg ulcers.

16.
Ultrasound Med Biol ; 47(3): 640-650, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33261908

RESUMO

Four to six million patients a year in the United States suffer from chronic pain caused by facet joint degeneration. Thermal ablation of the affected facet joint's sensory nerve using radiofrequency electrodes is the therapeutic standard of care. High-intensity focused ultrasound (HIFU) is a novel technology enabling image-guided non-invasive thermal ablation of tissue. Six pigs underwent fluoroscopy-guided HIFU of the medial branch nerve and were followed up for 1 wk (two pigs), 1 mo (two pigs) and 3 mo (two pigs). At the end of each follow-up period, the animals were sacrificed, and targeted tissue was excised and evaluated with computed tomography scans as well as by macro- and micropathology. No significant adverse events were recorded during the procedure or follow-up period. All targets were successfully ablated. X-Ray-guided HIFU is a feasible and promising alternative to radiofrequency ablation of the lumbar facet joint sensory nerve.


Assuntos
Dor Crônica/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Neuralgia/cirurgia , Cirurgia Assistida por Computador , Articulação Zigapofisária/inervação , Articulação Zigapofisária/cirurgia , Animais , Estudos de Viabilidade , Feminino , Ablação por Ultrassom Focalizado de Alta Intensidade/efeitos adversos , Masculino , Procedimentos Neurocirúrgicos/métodos , Estudo de Prova de Conceito , Suínos , Raios X
17.
Int J Hyperthermia ; 37(1): 1238-1247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33164625

RESUMO

BACKGROUND: Varicose veins are a common disease that may significantly affect quality of life. Different approaches are currently used in clinical practice to treat this pathology. MATERIALS AND METHODS: In thermal therapy (radiofrequency or laser therapy), the vein is directly heated to a high temperature to induce vein wall coagulation, and the heat induces denaturation of the intramural collagen, which results macroscopically in vein shrinkage. Thermal vein shrinkage is a physical indicator of the efficiency of endovenous treatment. High-intensity focused ultrasound (HIFU) is a noninvasive technique that can thermally coagulate vein walls and induce vein shrinkage. In this study, we evaluated the vein shrinkage induced in vivo by extracorporeal HIFU ablation of sheep veins: six lateral saphenous veins (3.4mm mean diameter) were sonicated for 8 s with 3MHz continuous waves. Ultrasound imaging was performed before and immediately post-HIFU to quantify the HIFU-induced shrinkage. RESULTS: Luminal constriction was observed in 100% (6/6) of the treated veins. The immediate findings showed a mean diameter constriction of 53%. The experimental HIFU-induced shrinkage data were used to validate a numerical model developed to predict the thermally induced vein contraction during HIFU treatment. CONCLUSIONS: This model is based on the use of the k-wave library and published contraction rates of vessels immersed in hot water baths. The simulation results agreed well with those of in vivo experiments, showing a mean percent difference of 5%. The numerical model could thus be a valuable tool for optimizing ultrasound parameters as functions of the vein diameter, and future clinical trials are anticipated.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Terapia a Laser , Varizes , Animais , Qualidade de Vida , Veia Safena/diagnóstico por imagem , Veia Safena/cirurgia , Ovinos
18.
Front Physiol ; 11: 1042, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973560

RESUMO

Since the late 2010s, Transcranial Ultrasound Stimulation (TUS) has been used experimentally to carryout safe, non-invasive stimulation of the brain with better spatial resolution than Transcranial Magnetic Stimulation (TMS). This innovative stimulation method has emerged as a novel and valuable device for studying brain function in humans and animals. In particular, single pulses of TUS directed to oculomotor regions have been shown to modulate visuomotor behavior of non-human primates during 100 ms ultrasound pulses. In the present study, a sustained effect was induced by applying 20-s trains of neuronavigated repetitive Transcranial Ultrasound Stimulation (rTUS) to oculomotor regions of the frontal cortex in three non-human primates performing an antisaccade task. With the help of MRI imaging and a frame-less stereotactic neuronavigation system (SNS), we were able to demonstrate that neuronavigated TUS (outside of the MRI scanner) is an efficient tool to carry out neuromodulation procedures in non-human primates. We found that, following neuronavigated rTUS, saccades were significantly modified, resulting in shorter latencies compared to no-rTUS trials. This behavioral modulation was maintained for up to 20 min. Oculomotor behavior returned to baseline after 18-31 min and could not be significantly distinguished from the no-rTUS condition. This study is the first to show that neuronavigated rTUS can have a persistent effect on monkey behavior with a quantified return-time to baseline. The specificity of the effects could not be explained by auditory confounds.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32396081

RESUMO

The phase correction necessary for transcranial ultrasound therapy requires numerical simulation to noninvasively assess the phase shift induced by the skull bone. Ideally, the numerical simulations need to be fast enough for clinical implementation in a brain therapy protocol and to provide accurate estimation of the phase shift to optimize the refocusing through the skull. In this article, we experimentally performed transcranial ultrasound focusing at 900 kHz on N = 5 human skulls. To reduce the computation time, we propose here to perform the numerical simulation at 450 kHz and use the corresponding phase shifts experimentally at 900 kHz. We demonstrate that a 450-kHz simulation restores 94.2% of the pressure when compared with a simulation performed at 900 kHz and 85.0% of the gold standard pressure obtained by an invasive time reversal procedure based on the signal recorded by a hydrophone placed at the target. From a 900- to 450-kHz simulation, the grid size is divided by 8, and the computation time is divided by 10.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Crânio/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Simulação por Computador , Humanos , Processamento de Sinais Assistido por Computador , Ultrassonografia
20.
Int J Hyperthermia ; 37(1): 231-244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133898

RESUMO

Purpose: Varicose veins are a common pathology that can be treated by endovenous thermal procedures like radiofrequency ablation (RFA). Such catheter-based techniques consist in raising the temperature of the vein wall to 70 to 120 °C to induce vein wall coagulation. Although effective, this treatment option is not suited for all types of veins and can be technically challenging.Materials and methods: In this study, we used High-Intensity Focused Ultrasound (HIFU) as a non-invasive thermal ablation procedure to treat varicose veins and we assessed the long-term efficacy and safety of the procedure in a sheep model. In vivo experiments were first conducted on two saphenous veins to measure the temperature rise induced at the vein wall during HIFU ablation and were compared with reported RFA-induced thermal rise. Thermocouples were inserted in situ to perform 20 measurements during 8-s ultrasound pulses at 3 MHz. Eighteen saphenous veins of nine anesthetized sheep (2-2.5 % Isoflurane) were then exposed to similar pulses (85 W acoustic, 8 s). After treatments, animals recovered from anesthesia and were followed up 30, 60 and 90 days post-treatment (n = 3 animals per group). At the end of the follow-up, vein segments and perivenous tissues were harvested and histologically examined.Results: Temperatures induced by HIFU pulses were found to be comparable to reported RFA treatments. Likewise, histological findings were similar to the ones reported after RFA and laser-based coagulation necrosis of the vein wall, thrombotic occlusions and vein wall fibrosis.Conclusion: These results support strongly the effectiveness and safety of HIFU for ablating non-invasively veins.


Assuntos
Ablação por Cateter/métodos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Ultrassonografia/métodos , Varizes/diagnóstico por imagem , Varizes/terapia , Animais , Modelos Animais de Doenças , Feminino , Temperatura Alta , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...