Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 350(6261): 678-80, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26405228

RESUMO

Assembly of protein complexes is considered a posttranslational process involving random collision of subunits. We show that within the Escherichia coli cytosol, bacterial luciferase subunits LuxA and LuxB assemble into complexes close to the site of subunit synthesis. Assembly efficiency decreases markedly if subunits are synthesized on separate messenger RNAs from genes integrated at distant chromosomal sites. Subunit assembly initiates cotranslationally on nascent LuxB in vivo. The ribosome-associated chaperone trigger factor delays the onset of cotranslational interactions until the LuxB dimer interface is fully exposed. Protein assembly is thus directly coupled to the translation process and involves spatially confined, actively chaperoned cotranslational subunit interactions. Bacterial gene organization into operons therefore reflects a fundamental cotranslational mechanism for spatial and temporal regulation that is vital to effective assembly of protein complexes.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Ordem dos Genes , Luciferases Bacterianas/genética , Luciferases Bacterianas/metabolismo , Óperon , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli , Genes Bacterianos , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Luciferases Bacterianas/química , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/metabolismo , Vibrio/enzimologia
2.
Nature ; 496(7444): 233-7, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23542589

RESUMO

Our innate immune system distinguishes microbes from self by detecting conserved pathogen-associated molecular patterns. However, these are produced by all microbes, regardless of their pathogenic potential. To distinguish virulent microbes from those with lower disease-causing potential the innate immune system detects conserved pathogen-induced processes, such as the presence of microbial products in the host cytosol, by mechanisms that are not fully resolved. Here we show that NOD1 senses cytosolic microbial products by monitoring the activation state of small Rho GTPases. Activation of RAC1 and CDC42 by bacterial delivery or ectopic expression of SopE, a virulence factor of the enteric pathogen Salmonella, triggered the NOD1 signalling pathway, with consequent RIP2 (also known as RIPK2)-mediated induction of NF-κB-dependent inflammatory responses. Similarly, activation of the NOD1 signalling pathway by peptidoglycan required RAC1 activity. Furthermore, constitutively active forms of RAC1, CDC42 and RHOA activated the NOD1 signalling pathway. Our data identify the activation of small Rho GTPases as a pathogen-induced process sensed through the NOD1 signalling pathway.


Assuntos
Proteína Adaptadora de Sinalização NOD1/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Citosol/metabolismo , Feminino , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peptidoglicano/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Salmonella typhimurium/genética , Transdução de Sinais , Fatores de Virulência/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...