Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 27287, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27264104

RESUMO

The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle -the fusion pore- can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, "flipped" t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability.


Assuntos
Fusão Celular/métodos , Núcleo Celular/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Cálcio/metabolismo , Exocitose , Células HeLa , Humanos , Fusão de Membrana , Neurotransmissores , Ligação Proteica , Domínios Proteicos , Vesículas Secretórias/metabolismo
2.
Langmuir ; 32(12): 3015-23, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26972604

RESUMO

Here we introduce ApoE-based nanolipoprotein particle (NLP)-a soluble, discoidal bilayer mimetic of ∼23 nm in diameter, as fusion partners to study the dynamics of fusion pores induced by SNARE proteins. Using in vitro lipid mixing and content release assays, we report that NLPs reconstituted with synaptic v-SNARE VAMP2 (vNLP) fuse with liposomes containing the cognate t-SNARE (Syntaxin1/SNAP25) partner, with the resulting fusion pore opening directly to the external buffer. Efflux of encapsulated fluorescent dextrans of different sizes show that unlike the smaller nanodiscs, these larger NLPs accommodate the expansion of the fusion pore to at least ∼9 nm, and dithionite quenching of fluorescent lipid introduced in vNLP confirms that the NLP fusion pores are short-lived and eventually reseal. The NLPs also have capacity to accommodate larger number of proteins and using vNLPs with defined number of VAMP2 protein, including physiologically relevant copy numbers, we find that 3-4 copies of VAMP2 (minimum 2 per face) are required to keep a nascent fusion pore open, and the SNARE proteins act cooperatively to dilate the nascent fusion pore.


Assuntos
Apolipoproteínas E/química , Fusão de Membrana , Nanopartículas/química , Cálcio , Colesterol/química , Dextranos , Dimiristoilfosfatidilcolina/química , Ditionita , Corantes Fluorescentes/química , Lipossomos , Tamanho da Partícula , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositóis , Fosfatidilserinas/química , Proteína 25 Associada a Sinaptossoma/química , Sintaxina 1/química , Proteína 2 Associada à Membrana da Vesícula/química
3.
Proc Natl Acad Sci U S A ; 111(38): 13966-71, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201968

RESUMO

The synaptic vesicle protein synaptotagmin-1 (SYT) is required to couple calcium influx to the membrane fusion machinery. However, the structural mechanism underlying this process is unclear. Here we report an unexpected circular arrangement (ring) of SYT's cytosolic domain (C2AB) formed on lipid monolayers in the absence of free calcium ions as revealed by electron microscopy. Rings vary in diameter from 18-43 nm, corresponding to 11-26 molecules of SYT. Continuous stacking of the SYT rings occasionally converts both lipid monolayers and bilayers into protein-coated tubes. Helical reconstruction of the SYT tubes shows that one of the C2 domains (most likely C2B, based on its biochemical properties) interacts with the membrane and is involved in ring formation, and the other C2 domain points radially outward. SYT rings are disrupted rapidly by physiological concentrations of free calcium but not by magnesium. Assuming that calcium-free SYT rings are physiologically relevant, these results suggest a simple and novel mechanism by which SYT regulates neurotransmitter release: The ring acts as a spacer to prevent the completion of the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) complex assembly, thereby clamping fusion in the absence of calcium. When the ring disassembles in the presence of calcium, fusion proceeds unimpeded.


Assuntos
Cálcio/química , Bicamadas Lipídicas/química , Complexos Multiproteicos/química , Proteínas SNARE/química , Sinaptotagmina I/química , Humanos , Complexos Multiproteicos/ultraestrutura , Estrutura Terciária de Proteína
4.
Biochemistry ; 53(19): 3248-60, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24786965

RESUMO

The Sec pathway mediates translocation of protein across the inner membrane of bacteria. SecA is a motor protein that drives translocation of preprotein through the SecYEG channel. SecA reversibly dimerizes under physiological conditions, but different dimer interfaces have been observed in SecA crystal structures. Here, we have used biophysical approaches to address the nature of the SecA dimer that exists in solution. We have taken advantage of the extreme salt sensitivity of SecA dimerization to compare the rates of hydrogen-deuterium exchange of the monomer and dimer and have analyzed the effects of single-alanine substitutions on dimerization affinity. Our results support the antiparallel dimer arrangement observed in one of the crystal structures of Bacillus subtilis SecA. Additional residues lying within the preprotein binding domain and the C-terminus are also protected from exchange upon dimerization, indicating linkage to a conformational transition of the preprotein binding domain from an open to a closed state. In agreement with this interpretation, normal mode analysis demonstrates that the SecA dimer interface influences the global dynamics of SecA such that dimerization stabilizes the closed conformation.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Multimerização Proteica/fisiologia , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Estrutura Quaternária de Proteína , Canais de Translocação SEC , Proteínas SecA
5.
Biochemistry ; 52(14): 2388-401, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23484952

RESUMO

The Sec machinery constitutes the major pathway for protein translocation in bacteria. SecA is thought to act as a molecular motor driving translocation of the preprotein across the membrane by repeated ATP-driven cycles of insertion and retraction at the translocon channel. SecA is predominately a dimer under physiological conditions; however, its oligomeric state during active protein translocation is still unresolved. Five SecA crystal structures have been determined, each displaying a different dimer interface, suggesting that SecA may adopt different dimer configurations. In this study, a Förster resonance energy transfer approach was utilized with nine functional monocysteine SecA mutants labeled with appropriate dyes to determine the predominant solution state dimer. Three different dye pairs allowed interprotomer distances ranging from 20 to 140 Å to be investigated. Comparison of 15 experimentally determined distances with those predicted from X-ray structures showed the greatest agreement with the Bacillus subtilis SecA antiparallel dimer structure [Hunt, J., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., and Deisenhfer, J. (2002) Science 297, 2018-2026]. The binding of two signal peptides to SecA was also examined to determine their effect on SecA dimer structure. We found that the SecA dimer is maintained upon peptide binding; however, the preprotein cross-linking domain (PPXD) and helical wing domain regions experience significant conformational changes, and the PPXD movement is greatly enhanced by binding of an extended signal peptide containing 19 additional residues. Modeling of an "open" antiparallel dimer structure suggests that binding of preprotein to SecA induces an activated open conformation suitable for binding to SecYEG.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/química , Cisteína/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutação Puntual , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Sinais Direcionadores de Proteínas , Canais de Translocação SEC , Proteínas SecA
6.
Protein Sci ; 21(1): 13-25, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22031009

RESUMO

Signal peptidase I (SPase I) is critical for the release of translocated preproteins from the membrane as they are transported from a cytoplasmic site of synthesis to extracytoplasmic locations. These proteins are synthesized with an amino-terminal extension, the signal sequence, which directs the preprotein to the Sec- or Tat-translocation pathway. Recent evidence indicates that the SPase I cleaves preproteins as they emerge from either pathway, though the steps involved are unclear. Now that the structure of many translocation pathway components has been elucidated, it is critical to determine how these components work in concert to support protein translocation and cleavage. Molecular modeling and NMR studies have provided insight on how the preprotein docks on SPase I in preparation for cleavage. This is a key area for future work since SPase I enzymes in a variety of species have now been identified and the inhibition of these enzymes by antibiotics is being pursued. The eubacterial SPase I is essential for cell viability and belongs to a unique group of serine endoproteases which utilize a Ser-Lys catalytic dyad instead of the prototypical Ser-His-Asp triad used by eukaryotes. As such, SPase I is a desirable antimicrobial target. Advances in our understanding of how the preprotein interfaces with SPase I during the final stages of translocation will facilitate future development of inhibitors that display a high efficacy against SPase I function.


Assuntos
Proteínas de Membrana/metabolismo , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias , Humanos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Biossíntese de Proteínas , Sinais Direcionadores de Proteínas , Transporte Proteico
7.
Biochemistry ; 49(4): 782-92, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20025247

RESUMO

Identification of the signal peptide-binding domain within SecA ATPase is an important goal for understanding the molecular basis of SecA preprotein recognition as well as elucidating the chemo-mechanical cycle of this nanomotor during protein translocation. In this study, Forster resonance energy transfer methodology was employed to map the location of the SecA signal peptide-binding domain using a collection of functional monocysteine SecA mutants and alkaline phosphatase signal peptides labeled with appropriate donor-acceptor fluorophores. Fluorescence anisotropy measurements yielded an equilibrium binding constant of 1.4 or 10.7 muM for the alkaline phosphatase signal peptide labeled at residue 22 or 2, respectively, with SecA, and a binding stoichiometry of one signal peptide bound per SecA monomer. Binding affinity measurements performed with a monomer-biased mutant indicate that the signal peptide binds equally well to SecA monomer or dimer. Distance measurements determined for 13 SecA mutants show that the SecA signal peptide-binding domain encompasses a portion of the preprotein cross-linking domain but also includes regions of nucleotide-binding domain 1 and particularly the helical scaffold domain. The identified region lies at a multidomain interface within the heart of SecA, surrounded by and potentially responsive to domains important for binding nucleotide, mature portions of the preprotein, and the SecYEG channel. Our FRET-mapped binding domain, in contrast to the domain identified by NMR spectroscopy, includes the two-helix finger that has been shown to interact with the preprotein during translocation and lies at the entrance to the protein-conducting channel in the recently determined SecA-SecYEG structure.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Canais de Translocação SEC , Proteínas SecA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...