Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(2): 101248, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38680552

RESUMO

Metachromatic leukodystrophy (MLD) is a rare, autosomal recessive neurodegenerative disease caused by deficient activity of the lysosomal enzyme arylsulfatase A (ARSA), resulting in sulfatide accumulation and subsequent demyelination and neuronal damage within the central and peripheral nervous systems. Three clinical forms of MLD have been described, based on age at symptom onset. The most frequent and severe forms have an early onset, with the disease progressing rapidly toward severe motor and cognitive regression and ultimately premature death. There are currently no approved therapies for most of these early-onset patients once symptoms are present. Thus, it is crucial to develop new approaches to treat symptomatic patients. Here, we proposed a gene therapy approach based on the intravenous delivery of AAVPHP.eB encoding ARSA. MLD mice were treated at 6 months for a dose-response study and at 9 months to assess late-treatment efficacy. Therapeutic efficacy was evaluated 3 or 6 months after injection. We demonstrated a broad transduction in the central nervous system, a complete correction of sulfatide storage, and a significant improvement in neuroinflammation at low dose and late treatment. Taken together, this work establishes a strong rationale for proposing a phase I/II clinical trial in MLD patients.

2.
J Control Release ; 352: 994-1008, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370877

RESUMO

Wireless powered optogenetic cell-based implant provides a strategy to deliver subcutaneously therapeutic proteins. Immortalize Human Mesenchymal Stem Cells (hMSC-TERT) expressing the bacteriophytochrome diguanylate cyclase (DGCL) were validated for optogenetic controlled interferon-ß delivery (Optoferon cells) in a bioelectronic cell-based implant. Optoferon cells transcriptomic profiling was used to elaborate an in-silico model of the recombinant interferon-ß production. Wireless optoelectronic device integration was developed using additive manufacturing and injection molding. Implant cell-based optoelectronic interface manufacturing was established to integrate industrial flexible compact low-resistance screen-printed Near Field Communication (NFC) coil antenna. Optogenetic cell-based implant biocompatibility, and device performances were evaluated in the Experimental Autoimmune Encephalomyelitis (EAE) mouse model of multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Humanos , Esclerose Múltipla/terapia , Encefalomielite Autoimune Experimental/terapia , Interferon beta/genética , Interferon beta/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Camundongos Endogâmicos C57BL
3.
J Neurosci Res ; 100(1): 203-219, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32253777

RESUMO

A major challenge in medicine is developing potent pain therapies without the adverse effects of opiates. Neuroinflammation and in particular microglial activation have been shown to contribute to these effects. However, the implication of the microglial mu opioid receptor (MOR) is not known. We developed a novel conditional knockout (cKO) mouse line, wherein MOR is deleted in microglia. Morphine analgesic tolerance was delayed in both sexes in cKO mice in the hot plate assay. Opioid-induced hyperalgesia (OIH) as measured in the tail immersion assay was abolished in male cKO mice, and physical dependence to morphine as assessed by naloxone-induced withdrawal was attenuated in female cKO mice. Our results show a sex-dependent contribution of microglial MOR in morphine analgesic tolerance, OIH, and physical dependence. In conclusion, our data suggest that blockade of microglial MOR could represent a therapeutic target for opiate analgesia without the opiate adverse effects.


Assuntos
Morfina , Receptores Opioides mu , Analgésicos , Analgésicos Opioides/efeitos adversos , Animais , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Microglia , Morfina/efeitos adversos , Receptores Opioides mu/genética
4.
Front Cell Neurosci ; 15: 745178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602984

RESUMO

Background: The delta opioid receptor (DOR) contributes to pain control, and a major challenge is the identification of DOR populations that control pain, analgesia, and tolerance. Astrocytes are known as important cells in the pathophysiology of chronic pain, and many studies report an increased prevalence of pain in women. However, the implication of astrocytic DOR in neuropathic pain and analgesia, as well as the influence of sex in this receptor activity, remains unknown. Experimental Approach: We developed a novel conditional knockout (cKO) mouse line wherein DOR is deleted in astrocytes (named GFAP-DOR-KO), and investigated neuropathic mechanical allodynia as well as analgesia and analgesic tolerance in mutant male and female mice. Neuropathic cold allodynia was also characterized in mice of both sexes lacking DOR either in astrocytes or constitutively. Results: Neuropathic mechanical allodynia was similar in GFAP-DOR-KO and floxed DOR control mice, and the DOR agonist SNC80 produced analgesia in mutant mice of both sexes. Interestingly, analgesic tolerance developed in cKO males and was abolished in cKO females. Cold neuropathic allodynia was reduced in mice with decreased DOR in astrocytes. By contrast, cold allodynia was exacerbated in full DOR KO females. Conclusions: These findings show that astrocytic DOR has a prominent role in promoting cold allodynia and analgesic tolerance in females, while overall DOR activity was protective. Altogether this suggests that endogenous- and exogenous-mediated DOR activity in astrocytes worsens neuropathic allodynia while DOR activity in other cells attenuates this form of pain. In conclusion, our results show a sex-specific implication of astrocytic DOR in neuropathic pain and analgesic tolerance. These findings open new avenues for developing tailored DOR-mediated analgesic strategies.

5.
Front Bioeng Biotechnol ; 9: 620967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249877

RESUMO

Improving a drug delivery system is critical to treat central nervous system disorders. Here we studied an innovative approach based on implantation of a wireless-powered cell-based device in mice. This device, coupling biologic material and electronics, is the first of its kind. The advantage of this technology is its ability to control the secretion of a therapeutic molecule and to switch the classical permanent delivery to activation on demand. In diseases with relapsing-remitting phases such as multiple sclerosis, such activation could be selectively achieved in relapsing phases. However, the safety (tolerance to biomaterials and surgical procedure) of such a clinical device needs to be verified. Therefore, the development of tools to assess the biocompatibility of the system in animal models is an essential step. We present the development of this new therapeutic approach, the challenges we encountered during the different steps of its development (such as cell loading in the chamber, surgery protocol for subcutaneous implantation of the device) and the tools we used to evaluate cell viability and biocompatibility of the device.

6.
Front Mol Neurosci ; 14: 677895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093126

RESUMO

Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder characterized by accumulation of sulfatides in both glial cells and neurons. MLD results from an inherited deficiency of arylsulfatase A (ARSA) and myelin degeneration in the central and peripheral nervous systems. Currently, no effective treatment is available for the most frequent late infantile (LI) form of MLD after symptom onset. The LI form results in rapid neurological degradation and early death. ARSA enzyme must be rapidly and efficiently delivered to brain and spinal cord oligodendrocytes of patients with LI MLD in order to potentially stop the progression of the disease. We previously showed that brain gene therapy with adeno-associated virus serotype rh10 (AAVrh10) driving the expression of human ARSA cDNA alleviated most long-term disease manifestations in MLD mice but was not sufficient in MLD patient to improve disease progression. Herein, we evaluated the short-term effects of intravenous AAVPHP.eB delivery driving the expression of human ARSA cDNA under the control of the cytomegalovirus/b-actin hybrid (CAG) promoter in 6-month-old MLD mice that already show marked sulfatide accumulation and brain pathology. Within 3 months, a single intravenous injection of AAVPHP.eB-hARSA-HA resulted in correction of brain and spinal cord sulfatide storage, and improvement of astrogliosis and microgliosis in brain and spinal cord of treated animals. These results strongly support to consider the use of AAVPHP.eB-hARSA vector for intravenous gene therapy in symptomatic rapidly progressing forms of MLD.

7.
Hum Gene Ther ; 32(7-8): 349-374, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33167739

RESUMO

For more than 10 years, gene therapy for neurological diseases has experienced intensive research growth and more recently therapeutic interventions for multiple indications. Beneficial results in several phase 1/2 clinical studies, together with improved vector technology have advanced gene therapy for the central nervous system (CNS) in a new era of development. Although most initial strategies have focused on orphan genetic diseases, such as lysosomal storage diseases, more complex and widespread conditions like Alzheimer's disease, Parkinson's disease, epilepsy, or chronic pain are increasingly targeted for gene therapy. Increasing numbers of applications and patients to be treated will require improvement and simplification of gene therapy protocols to make them accessible to the largest number of affected people. Although vectors and manufacturing are a major field of academic research and industrial development, there is a growing need to improve, standardize, and simplify delivery methods. Delivery is the major issue for CNS therapies in general, and particularly for gene therapy. The blood-brain barrier restricts the passage of vectors; strategies to bypass this obstacle are a central focus of research. In this study, we present the different ways that can be used to deliver gene therapy products to the CNS. We focus on results obtained in large animals that have allowed the transfer of protocols to human patients and have resulted in the generation of clinical data. We discuss the different routes of administration, their advantages, and their limitations. We describe techniques, equipment, and protocols and how they should be selected for safe delivery and improved efficiency for the next generation of gene therapy trials for CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central , Técnicas de Transferência de Genes , Animais , Sistema Nervoso Central , Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/terapia , Terapia Genética , Vetores Genéticos/genética , Humanos
8.
Front Psychiatry ; 9: 726, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30662412

RESUMO

Background: Microglia activation contributes to chronic pain and to the adverse effects of opiate use such as analgesic tolerance and opioid-induced hyperalgesia. Both mu opioid receptor (MOR) encoded by Oprm1/OPRM1 gene and toll like receptor 4 (TLR4) have been reported to mediate these morphine effects and a current question is whether microglia express the Oprm1 transcript and MOR protein. The aim of this study was to characterize Oprm1-MOR expression in naive murine and human microglia, combining transcriptomics datasets previously published by other groups with our own imaging study using the Cx3cr1-eGFP-MOR-mCherry reporter mouse line. Methods: We analyzed microglial Oprm1/OPRM1 expression obtained from transcriptomics datasets, focusing on ex vivo studies from adult wild-type animals and adult post-mortem human cerebral cortex. Oprm1, as well as co-regulated gene sets were examined. The expression of MOR in microglia was also investigated using our novel fluorescent Cx3cr1-eGFP-MOR-mcherry reporter mouse line. We determined whether CX3cR1-eGFP positive microglial cells expressed MOR-mCherry protein by imaging various brain areas including the Frontal Cortex, Nucleus Accumbens, Ventral Tegmental Area, Central Amygdala, and Periaqueductal Gray matter, as well as spinal cord. Results: Oprm1 expression was found in all 12 microglia datasets from mouse whole brain, in 7 out of 8 from cerebral cortex, 3 out of 4 from hippocampus, 1 out of 1 from striatum, and 4 out of 5 from mouse or rat spinal cord. OPRM1 was expressed in 16 out of 17 microglia transcriptomes from human cerebral cortex. In Cx3cr1-eGFP-MOR-mCherry mice, the percentage of MOR-positive microglial cells ranged between 35.4 and 51.6% in the different brain areas, and between 36.8 and 42.4% in the spinal cord. Conclusion: The comparative analysis of the microglia transcriptomes indicates that Oprm1/OPRM1 transcripts are expressed in microglia. The investigation of Cx3cr1-eGFP-MOR-mCherry mice also shows microglial expression of MOR proteinin the brain and spine. These results corroborate functional studies showing the actions of MOR agonists on microglia and suppression of these effects by MOR-selective antagonists or MOR knockdown.

9.
Sci Rep ; 7(1): 10406, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871199

RESUMO

Opiates are potent analgesics but their clinical use is limited by side effects including analgesic tolerance and opioid-induced hyperalgesia (OIH). The Opiates produce analgesia and other adverse effects through activation of the mu opioid receptor (MOR) encoded by the Oprm1 gene. However, MOR and morphine metabolism involvement in OIH have been little explored. Hence, we examined MOR contribution to OIH by comparing morphine-induced hyperalgesia in wild type (WT) and MOR knockout (KO) mice. We found that repeated morphine administration led to analgesic tolerance and hyperalgesia in WT mice but not in MOR KO mice. The absence of OIH in MOR KO mice was found in both sexes, in two KO global mutant lines, and for mechanical, heat and cold pain modalities. In addition, the morphine metabolite morphine-3beta-D-glucuronide (M3G) elicited hyperalgesia in WT but not in MOR KO animals, as well as in both MOR flox and MOR-Nav1.8 sensory neuron conditional KO mice. M3G displayed significant binding to MOR and G-protein activation when using membranes from MOR-transfected cells or WT mice but not from MOR KO mice. Collectively our results show that MOR is involved in hyperalgesia induced by chronic morphine and its metabolite M3G.


Assuntos
Hiperalgesia/induzido quimicamente , Derivados da Morfina/efeitos adversos , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Animais , Modelos Animais de Doenças , Tolerância a Medicamentos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Hiperalgesia/genética , Hiperalgesia/metabolismo , Masculino , Camundongos , Morfina/efeitos adversos , Morfina/farmacologia , Derivados da Morfina/farmacologia
10.
Am J Pathol ; 186(10): 2709-22, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27497324

RESUMO

In Alzheimer disease, the development of tau pathology follows neuroanatomically connected pathways, suggesting that abnormal tau species might recruit normal tau by passage from cell to cell. Herein, we analyzed the effect of stereotaxic brain injection of human Alzheimer high-molecular-weight paired helical filaments (PHFs) in the dentate gyrus of wild-type and mutant tau THY-Tau22 mice. After 3 months of incubation, wild-type and THY-Tau22 mice developed an atrophy of the dentate gyrus and a tau pathology characterized by Gallyas and tau-positive grain-like inclusions into granule cells that extended in the hippocampal hilus and eventually away into the alveus, and the fimbria. Gallyas-positive neuropil threads and oligodendroglial coiled bodies were also observed. These tau inclusions were composed only of mouse tau, and were immunoreactive with antibodies to 4R tau, phosphotau, misfolded tau, ubiquitin, and p62. Although local hyperphosphorylation of tau was increased in the dentate gyrus in THY-Tau22 mice, the development of neurofibrillary tangles made of mutant human tau was not accelerated in the hippocampus, indicating that wild-type human PHFs were inefficient in seeding tau aggregates made of G272V/P301S mutant human tau. Our results indicate thus that injection of human wild-type Alzheimer PHF seeded aggregation of wild-type murine tau into an argyrophilic 4R tau pathology, and constitutes an interesting model independent of expression of a mutant tau protein.


Assuntos
Doença de Alzheimer/patologia , Citoesqueleto/patologia , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Animais , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/patologia , Células CHO , Cricetulus , Citoesqueleto/metabolismo , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Emaranhados Neurofibrilares/metabolismo , Isoformas de Proteínas , Proteínas tau/genética
11.
FASEB J ; 30(5): 1696-711, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26718890

RESUMO

Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Fibroblastos/fisiologia , Regulação da Expressão Gênica/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Junção Neuromuscular/fisiologia , Animais , Células Cultivadas , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/fisiologia
12.
Am J Pathol ; 185(10): 2685-97, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26272360

RESUMO

Several neurodegenerative diseases are characterized by both cognitive and motor deficits associated with accumulation of tau aggregates in brain, brainstem, and spinal cord. The Tg30 murine tauopathy model expresses a human tau protein bearing two frontotemporal dementia with Parkinsonism linked to chromosome 17 pathogenic mutations and develops a severe motor deficit and tau aggregates in brain and spinal cord. To investigate the origin of this motor deficit, we analyzed the age-dependent innervation status of the neuromuscular junctions and mutant tau expression in Tg30 mice. The human transgenic tau was detected from postnatal day 7 onward in motoneurons, axons in the sciatic nerve, and axon terminals of the neuromuscular junctions. The development and maturation of neuromuscular junctions were not disrupted in Tg30 mice, but their maintenance was disturbed in adult Tg30 mice, resulting in a progressive and severe muscle denervation. This muscle denervation was associated with early electrophysiological signs of muscle spontaneous activities and histological signs of muscle degeneration. Early loss of synaptic vesicles in axon terminals preceding motor deficits, accumulation of Gallyas-positive aggregates, and cathepsin-positive vesicular clusters in axons in the sciatic nerve suggest that this denervation results from disturbances of axonal transport. This physiopathological mechanism might be responsible for motor signs observed in some human tauopathies, and for synaptic dysfunction resulting from alterations at the presynaptic level in these diseases.


Assuntos
Transporte Axonal/fisiologia , Axônios/patologia , Junção Neuromuscular/patologia , Tauopatias/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Denervação/métodos , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Degeneração Neural/patologia , Medula Espinal/patologia , Vesículas Sinápticas/metabolismo , Tauopatias/genética
13.
J Biomed Mater Res A ; 102(7): 2345-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23946111

RESUMO

We hypothesized that vascular endothelial growth factor (VEGF)-containing hydrogels that gelify in situ after injection into a traumatized spinal cord, could stimulate spinal cord regeneration. Injectable hydrogels composed of 0.5% Pronova UPMVG MVG alginate, supplemented or not with fibrinogen, were used. The addition of fibrinogen to alginate had no effect on cell proliferation in vitro but supported neurite growth ex vivo. When injected into a rat spinal cord in a hemisection model, alginate supplemented with fibrinogen was well tolerated. The release of VEGF that was incorporated into the hydrogel was influenced by the VEGF formulation [encapsulated in microspheres or in nanoparticles or in solution (free)]. A combination of free VEGF and VEGF-loaded nanoparticles was mixed with alginate:fibrinogen and injected into the lesion of the spinal cord. Four weeks post injection, angiogenesis and neurite growth were increased compared to hydrogel alone. The local delivery of VEGF by injectable alginate:fibrinogen-based hydrogel induced some plasticity in the injured spinal cord involving fiber growth into the lesion site.


Assuntos
Hidrogéis , Plasticidade Neuronal , Traumatismos da Medula Espinal/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Materiais Biocompatíveis , Camundongos , Células NIH 3T3 , Ratos
14.
Mol Cell Neurosci ; 56: 159-68, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23669529

RESUMO

The Onecut (OC) family of transcription factors comprises three members in mammals, namely HNF-6 (or OC-1), OC-2 and OC-3. During embryonic development, these transcriptional activators control cell differentiation in pancreas, in liver and in the nervous system. Adult Hnf6 mutant mice exhibit locomotion defects characterized by hindlimb muscle weakness, abnormal gait and defective balance and coordination. Indeed, HNF-6 is required in spinal motor neurons for proper formation of the hindlimb neuromuscular junctions, which likely explain muscle weakness observed in corresponding mutant animals. The goal of the present study was to determine the cause of the balance and coordination defects in Hnf6 mutant mice. Coordination and balance deficits were quantified by rotarod and runway tests. Hnf6 mutant animals showed an increase in the fall frequency from the beam and were unable to stay on the rotarod even at low speed, indicating a severe balance and coordination deficit. To identify the origin of this abnormality, we assessed whether the development of the main CNS structure involved in the control of balance and coordination, namely the cerebellum, was affected by the absence of HNF-6. Firstly, we observed that Hnf6 was expressed transiently during the first week after birth in the Purkinje cells of wild type newborn mice. Secondly, we showed that, in Hnf6-/- mice, the organization of Purkinje cells became abnormal during a second phase of their development. Indeed, Purkinje cells were produced normally but part of them failed to reorganize as a regular continuous monolayer at the interface between the molecular and the granular layer of the cerebellum. Thus, the Onecut factor HNF-6 contributes to the reorganization of Purkinje cells during a late phase of cerebellar development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fator 6 Nuclear de Hepatócito/metabolismo , Locomoção , Células de Purkinje/metabolismo , Animais , Fator 6 Nuclear de Hepatócito/genética , Camundongos , Células de Purkinje/citologia , Células de Purkinje/fisiologia
15.
PLoS One ; 7(12): e50509, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23227180

RESUMO

The neuromuscular junctions are the specialized synapses whereby spinal motor neurons control the contraction of skeletal muscles. The formation of the neuromuscular junctions is controlled by a complex interplay of multiple mechanisms coordinately activated in motor nerve terminals and in their target myotubes. However, the transcriptional regulators that control in motor neurons the genetic programs involved in neuromuscular junction development remain unknown. Here, we provide evidence that the Onecut transcription factor HNF-6 regulates in motor neurons the formation of the neuromuscular junctions. Indeed, adult Hnf6 mutant mice exhibit hindlimb muscle weakness and abnormal locomotion. This results from defects of hindlimb neuromuscular junctions characterized by an abnormal morphology and defective localization of the synaptic vesicle protein synaptophysin at the motor nerve terminals. These defects are consequences of altered and delayed formation of the neuromuscular junctions in newborn mutant animals. Furthermore, we show that the expression level of numerous regulators of neuromuscular junction formation, namely agrin, neuregulin-2 and TGF-ß receptor II, is downregulated in the spinal motor neurons of Hnf6 mutant newborn animals. Finally, altered formation of neuromuscular junction-like structures in a co-culture model of wildtype myotubes with mutant embryonic spinal cord slices is rescued by recombinant agrin and neuregulin, indicating that depletion in these factors contributes to defective neuromuscular junction development in the absence of HNF-6. Thus, HNF-6 controls in spinal motor neurons a genetic program that coordinates the formation of hindlimb neuromuscular junctions.


Assuntos
Fator 6 Nuclear de Hepatócito/fisiologia , Neurônios Motores/fisiologia , Junção Neuromuscular/crescimento & desenvolvimento , Animais , Sequência de Bases , Técnicas de Cocultura , Primers do DNA , Imunofluorescência , Hibridização In Situ , Locomoção , Camundongos , Camundongos Mutantes , Microscopia Eletrônica , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...