Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Hum Brain Mapp ; 45(6): e26687, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38651629

RESUMO

The unprecedented increase in life expectancy presents a unique opportunity and the necessity to explore both healthy and pathological aspects of ageing. Electroencephalography (EEG) has been widely used to identify neuromarkers of cognitive ageing due to its affordability and richness in information. However, despite the growing volume of data and methodological advancements, the abundance of contradictory and non-reproducible findings has hindered clinical translation. To address these challenges, our study introduces a comprehensive workflow expanding on previous EEG studies and investigates various static and dynamic power and connectivity estimates as potential neuromarkers of cognitive ageing in a large dataset. We also assess the robustness of our findings by testing their susceptibility to band specification. Finally, we characterise our findings using functionally annotated brain networks to improve their interpretability and multi-modal integration. Our analysis demonstrates the effect of methodological choices on findings and that dynamic rather than static neuromarkers are not only more sensitive but also more robust. Consequently, they emerge as strong candidates for cognitive ageing neuromarkers. Moreover, we were able to replicate the most established EEG findings in cognitive ageing, such as alpha oscillation slowing, increased beta power, reduced reactivity across multiple bands, and decreased delta connectivity. Additionally, when considering individual variations in the alpha band, we clarified that alpha power is characteristic of memory performance rather than ageing, highlighting its potential as a neuromarker for cognitive ageing. Finally, our approach using functionally annotated source reconstruction allowed us to provide insights into domain-specific electrophysiological mechanisms underlying memory performance and ageing. HIGHLIGHTS: We provide an open and reproducible pipeline with a comprehensive workflow to investigate static and dynamic EEG neuromarkers. Neuromarkers related to neural dynamics are sensitive and robust. Individualised alpha power characterises cognitive performance rather than ageing. Functional annotation allows cross-modal interpretation of EEG findings.


Assuntos
Eletroencefalografia , Envelhecimento Saudável , Humanos , Eletroencefalografia/métodos , Envelhecimento Saudável/fisiologia , Idoso , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento Cognitivo/fisiologia , Biomarcadores , Rede Nervosa/fisiologia , Ondas Encefálicas/fisiologia , Ritmo alfa/fisiologia , Memória/fisiologia , Envelhecimento/fisiologia , Idoso de 80 Anos ou mais
2.
ArXiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37744469

RESUMO

The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS.

3.
Sci Data ; 9(1): 630, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253426

RESUMO

Magnetic Resonance Imaging (MRI) provides a unique opportunity to investigate neural changes in healthy and clinical conditions. Its large inherent susceptibility to motion, however, often confounds the measurement. Approaches assessing, correcting, or preventing motion corruption of MRI measurements are under active development, and such efforts can greatly benefit from carefully controlled datasets. We present a unique dataset of structural brain MRI images collected from 148 healthy adults which includes both motion-free and motion-affected data acquired from the same participants. This matched dataset allows direct evaluation of motion artefacts, their impact on derived data, and testing approaches to correct for them. Our dataset further stands out by containing images with different levels of motion artefacts from the same participants, is enriched with expert scoring characterizing the image quality from a clinical point of view and is also complemented with standard image quality metrics obtained from MRIQC. The goal of the dataset is to raise awareness of the issue and provide a useful resource to assess and improve current motion correction approaches.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Adulto , Humanos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Movimento (Física) , Neuroimagem
4.
Sci Data ; 9(1): 517, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002444

RESUMO

The Brain Imaging Data Structure (BIDS) established community consensus on the organization of data and metadata for several neuroimaging modalities. Traditionally, BIDS had a strong focus on functional magnetic resonance imaging (MRI) datasets and lacked guidance on how to store multimodal structural MRI datasets. Here, we present and describe the BIDS Extension Proposal 001 (BEP001), which adds a range of quantitative MRI (qMRI) applications to the BIDS. In general, the aim of qMRI is to characterize brain microstructure by quantifying the physical MR parameters of the tissue via computational, biophysical models. By proposing this new standard, we envision standardization of qMRI through multicenter dissemination of interoperable datasets. This way, BIDS can act as a catalyst of convergence between qMRI methods development and application-driven neuroimaging studies that can help develop quantitative biomarkers for neural tissue characterization. In conclusion, this BIDS extension offers a common ground for developers to exchange novel imaging data and tools, reducing the entrance barrier for qMRI in the field of neuroimaging.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Biomarcadores , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos
5.
J Affect Disord ; 313: 167-176, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35792299

RESUMO

Depression is the leading cause of disability worldwide, with prevalence rates rising. Despite the scale of the problem, available pharmacological and psychological interventions only have limited efficacy. The National Institute of Health's Science of Behaviour Change framework proposes to address this issue by capitalising on insights from basic science to identify mechanisms that can be targeted by novel interventions. The current study evaluated the potential of a computerized programme aimed at improving affective control, a mechanistic target involved in both risk and maintenance of depression. In a first phase the cognitive profiles of 48 depressed individuals (mean age: 39 years, 75 % female) were compared to cognitive functioning in 16 never-depressed individuals (mean age: 31 years, 56 % female). The sole index of functioning that differed between diagnostic groups was reaction time across negative and positively valanced trials on an affective Stroop task (d = 0.58). This index was then used to evaluate an affective control training (AffeCT) against a placebo training. Results showed no significant changes on tasks that showed no differences with never-depressed individuals in Phase I. However, compared to placebo training, AffeCT led to significantly greater improvement in the target index, affective Stroop performance (d = 1.17). Importantly, AffeCT led to greater reductions in negative affect as measured by the Positive Affect and Negative Affect Schedule compared to the placebo training (d = 0.98). This proof-of-concept study shows promising benefits of AffeCT on depressed individuals' affect, but not depressive symptoms. It further supports the utility of the Science of Behaviour Change framework, highlighting the need for determining meaningful assays of target mechanisms when evaluating novel interventions.


Assuntos
Afeto , Cognição , Depressão , Adulto , Feminino , Humanos , Masculino , Tempo de Reação , Teste de Stroop
6.
Neuroinformatics ; 20(4): 897-917, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35297018

RESUMO

Real-time quality assessment (rtQA) of functional magnetic resonance imaging (fMRI) based on blood oxygen level-dependent (BOLD) signal changes is critical for neuroimaging research and clinical applications. The losses of BOLD sensitivity because of different types of technical and physiological noise remain major sources of fMRI artifacts. Due to difficulty of subjective visual perception of image distortions during data acquisitions, a comprehensive automatic rtQA is needed. To facilitate rapid rtQA of fMRI data, we applied real-time and recursive quality assessment methods to whole-brain fMRI volumes, as well as time-series of target brain areas and resting-state networks. We estimated recursive temporal signal-to-noise ratio (rtSNR) and contrast-to-noise ratio (rtCNR), and real-time head motion parameters by a framewise rigid-body transformation (translations and rotations) using the conventional current to template volume registration. In addition, we derived real-time framewise (FD) and micro (MD) displacements based on head motion parameters and evaluated the temporal derivative of root mean squared variance over voxels (DVARS). For monitoring time-series of target regions and networks, we estimated the number of spikes and amount of filtered noise by means of a modified Kalman filter. Finally, we applied the incremental general linear modeling (GLM) to evaluate real-time contributions of nuisance regressors (linear trend and head motion). Proposed rtQA was demonstrated in real-time fMRI neurofeedback runs without and with excessive head motion and real-time simulations of neurofeedback and resting-state fMRI data. The rtQA was implemented as an extension of the open-source OpenNFT software written in Python, MATLAB and C++ for neurofeedback, task-based, and resting-state paradigms. We also developed a general Python library to unify real-time fMRI data processing and neurofeedback applications. Flexible estimation and visualization of rtQA facilitates efficient rtQA of fMRI data and helps the robustness of fMRI acquisitions by means of substantiating decisions about the necessity of the interruption and re-start of the experiment and increasing the confidence in neural estimates.


Assuntos
Mapeamento Encefálico , Neurorretroalimentação , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Artefatos , Neurorretroalimentação/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos
7.
Nat Protoc ; 17(3): 596-617, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121855

RESUMO

Low-intensity transcranial electrical stimulation (tES), including alternating or direct current stimulation, applies weak electrical stimulation to modulate the activity of brain circuits. Integration of tES with concurrent functional MRI (fMRI) allows for the mapping of neural activity during neuromodulation, supporting causal studies of both brain function and tES effects. Methodological aspects of tES-fMRI studies underpin the results, and reporting them in appropriate detail is required for reproducibility and interpretability. Despite the growing number of published reports, there are no consensus-based checklists for disclosing methodological details of concurrent tES-fMRI studies. The objective of this work was to develop a consensus-based checklist of reporting standards for concurrent tES-fMRI studies to support methodological rigor, transparency and reproducibility (ContES checklist). A two-phase Delphi consensus process was conducted by a steering committee (SC) of 13 members and 49 expert panelists through the International Network of the tES-fMRI Consortium. The process began with a circulation of a preliminary checklist of essential items and additional recommendations, developed by the SC on the basis of a systematic review of 57 concurrent tES-fMRI studies. Contributors were then invited to suggest revisions or additions to the initial checklist. After the revision phase, contributors rated the importance of the 17 essential items and 42 additional recommendations in the final checklist. The state of methodological transparency within the 57 reviewed concurrent tES-fMRI studies was then assessed by using the checklist. Experts refined the checklist through the revision and rating phases, leading to a checklist with three categories of essential items and additional recommendations: (i) technological factors, (ii) safety and noise tests and (iii) methodological factors. The level of reporting of checklist items varied among the 57 concurrent tES-fMRI papers, ranging from 24% to 76%. On average, 53% of checklist items were reported in a given article. In conclusion, use of the ContES checklist is expected to enhance the methodological reporting quality of future concurrent tES-fMRI studies and increase methodological transparency and reproducibility.


Assuntos
Lista de Checagem , Estimulação Transcraniana por Corrente Contínua , Consenso , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
8.
Gigascience ; 10(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34414422

RESUMO

As the global health crisis unfolded, many academic conferences moved online in 2020. This move has been hailed as a positive step towards inclusivity in its attenuation of economic, physical, and legal barriers and effectively enabled many individuals from groups that have traditionally been underrepresented to join and participate. A number of studies have outlined how moving online made it possible to gather a more global community and has increased opportunities for individuals with various constraints, e.g., caregiving responsibilities. Yet, the mere existence of online conferences is no guarantee that everyone can attend and participate meaningfully. In fact, many elements of an online conference are still significant barriers to truly diverse participation: the tools used can be inaccessible for some individuals; the scheduling choices can favour some geographical locations; the set-up of the conference can provide more visibility to well-established researchers and reduce opportunities for early-career researchers. While acknowledging the benefits of an online setting, especially for individuals who have traditionally been underrepresented or excluded, we recognize that fostering social justice requires inclusivity to actively be centered in every aspect of online conference design. Here, we draw from the literature and from our own experiences to identify practices that purposefully encourage a diverse community to attend, participate in, and lead online conferences. Reflecting on how to design more inclusive online events is especially important as multiple scientific organizations have announced that they will continue offering an online version of their event when in-person conferences can resume.

9.
Front Hum Neurosci ; 15: 645048, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113243

RESUMO

Neurofeedback (NF) is a complex learning scenario, as the task consists of trying out mental strategies while processing a feedback signal that signifies activation in the brain area to be self-regulated and acts as a potential reward signal. In an attempt to dissect these subcomponents, we obtained whole-brain networks associated with efficient self-regulation in two paradigms: parallel, where the task was performed concurrently, combining feedback with strategy execution; and serial, where the task was performed consecutively, separating feedback processing from strategy execution. Twenty participants attempted to control their anterior midcingulate cortex (aMCC) using functional magnetic resonance imaging (fMRI) NF in 18 sessions over 2 weeks, using cognitive and emotional mental strategies. We analyzed whole-brain fMRI activations in the NF training runs with the largest aMCC activation for the serial and parallel paradigms. The equal length of the strategy execution and the feedback processing periods in the serial paradigm allows a description of the two task subcomponents with equal power. The resulting activation maps were spatially correlated with functionally annotated intrinsic connectivity brain maps (BMs). Brain activation in the parallel condition correlates with the basal ganglia (BG) network, the cingulo-opercular network (CON), and the frontoparietal control network (FPCN); brain activation in the serial strategy execution condition with the default mode network (DMN), the FPCN, and the visual processing network; while brain activation in the serial feedback processing condition predominantly with the CON, the DMN, and the FPCN. Additional comparisons indicate that BG activation is characteristic to the parallel paradigm, while supramarginal gyrus (SMG) and superior temporal gyrus (STG) activations are characteristic to the serial paradigm. The multifaceted view of the subcomponents allows describing the cognitive processes associated with strategy execution and feedback processing independently in the serial feedback task and as combined processes in the multitasking scenario of the conventional parallel feedback task.

10.
Neuroimage ; 237: 118207, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048901

RESUMO

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.


Assuntos
Neuroimagem Funcional , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neurorretroalimentação , Adulto , Humanos
11.
Hum Brain Mapp ; 41(14): 3839-3854, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729652

RESUMO

Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Neurorretroalimentação/fisiologia , Prática Psicológica , Adulto , Humanos , Prognóstico
12.
Front Neuroinform ; 14: 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265681

RESUMO

In recent years, deep learning (DL) has become more widespread in the fields of cognitive and clinical neuroimaging. Using deep neural network models to process neuroimaging data is an efficient method to classify brain disorders and identify individuals who are at increased risk of age-related cognitive decline and neurodegenerative disease. Here we investigated, for the first time, whether structural brain imaging and DL can be used for predicting a physical trait that is of significant clinical relevance-the body mass index (BMI) of the individual. We show that individual BMI can be accurately predicted using a deep convolutional neural network (CNN) and a single structural magnetic resonance imaging (MRI) brain scan along with information about age and sex. Localization maps computed for the CNN highlighted several brain structures that strongly contributed to BMI prediction, including the caudate nucleus and the amygdala. Comparison to the results obtained via a standard automatic brain segmentation method revealed that the CNN-based visualization approach yielded complementary evidence regarding the relationship between brain structure and BMI. Taken together, our results imply that predicting BMI from structural brain scans using DL represents a promising approach to investigate the relationship between brain morphological variability and individual differences in body weight and provide a new scope for future investigations regarding the potential clinical utility of brain-predicted BMI.

14.
Front Hum Neurosci ; 12: 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403368

RESUMO

Background: Neurofeedback training (NFT) to decrease the theta/beta ratio (TBR) has been used for treating hyperactivity and impulsivity in attention deficit hyperactivity disorder (ADHD); however, often with low efficiency. Individual variance in EEG profile can confound NFT, because it may lead to influencing non-relevant activity, if ignored. More importantly, it may lead to influencing ADHD-related activities adversely, which may even result in worsening ADHD symptoms. Electromyogenic (EMG) signal resulted from forehead muscles can also explain the low efficiency of the NFT in ADHD from both practical and psychological point-of-view. The first aim of this study was to determine EEG and EMG biomarkers most related to the main ADHD characteristics, such as impulsivity and hyperactivity. The second aim was to confirm our hypothesis that the efficiency of the TBR NFT can be increased by individual adjustment of the frequency bands and simultaneous training on forehead muscle tension. Methods: We recruited 94 children diagnosed with ADHD (ADHD) and 23 healthy controls (HC). All participants were male and aged between six and nine. Impulsivity and attention were assessed with Go/no-Go task and delayed gratification task, respectively; and 19-channel EEG and forehead EMG were recorded. Then, the ADHD group was randomly subdivided into (1) standard, (2) individualized, (3) individualized+EMG, and (4) sham NFT (control) groups. The groups were compared based on TBR and EEG alpha activity, as well as hyperactivity and impulsivity three times: pre-NFT, post-NFT and 6 months after the NFT (follow-up). Results: ADHD children were characterized with decreased individual alpha peak frequency, alpha bandwidth and alpha amplitude suppression magnitude, as well as with increased alpha1/alpha2 (a1/a2) ratio and scalp muscle tension when c (η2 ≥ 0.212). All contingent TBR NFT groups exhibited significant NFT-related decrease in TBR not evident in the control group. Moreover, we detected a higher overall alpha activity in the individualized but not in the standard NFT group. Mixed MANOVA considering between-subject factor GROUP and within-subject factor TIME showed that the individualized+EMG group exhibited the highest level of clinical improvement, which was associated with increase in the individual alpha activity at the 6 months follow-up when comparing with the other approaches (post hoc t = 3.456, p = 0.011). Conclusions: This study identified various (adjusted) alpha activity metrics as biomarkers with close relationship with ADHD symptoms, and demonstrated that TBR NFT individually adjusted for variances in alpha activity is more successful and clinically more efficient than standard, non-individualized NFT. Moreover, these training effects of the individualized TBR NFT lasted longer when combined with EMG.

15.
Neuroscience ; 378: 22-33, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27133575

RESUMO

Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information for further optimization of NFB trainings.


Assuntos
Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Neurorretroalimentação/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Mãos/fisiologia , Humanos , Imaginação/fisiologia , Masculino , Córtex Motor/diagnóstico por imagem , Vias Neurais/fisiologia , Córtex Somatossensorial/diagnóstico por imagem , Adulto Jovem
16.
J Fluency Disord ; 55: 84-93, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28595893

RESUMO

PURPOSE: Neuroimaging studies in persistent developmental stuttering repeatedly report altered basal ganglia functions. Together with thalamus and cerebellum, these structures mediate sensorimotor functions and thus represent a plausible link between stuttering and neuroanatomy. However, stuttering is a complex, multifactorial disorder. Besides sensorimotor functions, emotional and social-motivational factors constitute major aspects of the disorder. Here, we investigated cortical and subcortical gray matter regions to study whether persistent developmental stuttering is also linked to alterations of limbic structures. METHODS: The study included 33 right-handed participants who stutter and 34 right-handed control participants matched for sex, age, and education. Structural images were acquired using magnetic resonance imaging to estimate volumetric characteristics of the nucleus accumbens, hippocampus, amygdala, pallidum, putamen, caudate nucleus, and thalamus. RESULTS: Volumetric comparisons and vertex-based shape comparisons revealed structural differences. The right nucleus accumbens was larger in participants who stutter compared to controls. CONCLUSION: Recent theories of basal ganglia functions suggest that the nucleus accumbens is a motivation-to-movement interface. A speaker intends to reach communicative goals, but stuttering can derail these efforts. It is therefore highly plausible to find alterations in the motivation-to-movement interface in stuttering. While behavioral studies of stuttering sought to find links between the limbic and sensorimotor system, we provide the first neuroimaging evidence of alterations in the limbic system. Thus, our findings might initialize a unified neurobiological framework of persistent developmental stuttering that integrates sensorimotor and social-motivational neuroanatomical circuitries.


Assuntos
Imageamento por Ressonância Magnética/métodos , Núcleo Accumbens/diagnóstico por imagem , Gagueira/diagnóstico por imagem , Adulto , Gânglios da Base/diagnóstico por imagem , Estudos de Casos e Controles , Cerebelo/diagnóstico por imagem , Feminino , Humanos , Masculino , Fatores Sexuais
17.
Brain Struct Funct ; 223(1): 165-182, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28741037

RESUMO

Persistent developmental stuttering is associated with basal ganglia dysfunction or dopamine dysregulation. Here, we studied whole-brain functional connectivity to test how basal ganglia structures coordinate and reorganize sensorimotor brain networks in stuttering. To this end, adults who stutter and fluent speakers (control participants) performed a response anticipation paradigm in the MRI scanner. The preparation of a manual Go/No-Go response reliably produced activity in the basal ganglia and thalamus and particularly in the substantia nigra. Strikingly, in adults who stutter, substantia nigra activity correlated positively with stuttering severity. Furthermore, functional connectivity analyses yielded altered task-related network formations in adults who stutter compared to fluent speakers. Specifically, in adults who stutter, the globus pallidus and the thalamus showed increased network synchronization with the inferior frontal gyrus. This implies dynamic shifts in the response preparation-related network organization through the basal ganglia in the context of a non-speech motor task in stuttering. Here we discuss current findings in the traditional framework of how D1 and D2 receptor activity shapes focused movement selection, thereby suggesting a disproportional involvement of the direct and the indirect pathway in stuttering.


Assuntos
Globo Pálido/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Gagueira/diagnóstico por imagem , Gagueira/fisiopatologia , Tálamo/diagnóstico por imagem , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Atividade Motora/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Oxigênio/sangue , Estimulação Luminosa , Psicofísica , Tempo de Reação/fisiologia , Adulto Jovem
18.
PLoS Comput Biol ; 13(3): e1005209, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278228

RESUMO

The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). The portability of these applications (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms.


Assuntos
Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Sistemas de Informação em Radiologia/organização & administração , Software , Interface Usuário-Computador , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos
19.
Neuroimage ; 144(Pt B): 262-269, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26375206

RESUMO

This paper describes the data repository for the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) initial study cohort. The Cam-CAN Stage 2 repository contains multi-modal (MRI, MEG, and cognitive-behavioural) data from a large (approximately N=700), cross-sectional adult lifespan (18-87years old) population-based sample. The study is designed to characterise age-related changes in cognition and brain structure and function, and to uncover the neurocognitive mechanisms that support healthy cognitive ageing. The database contains raw and preprocessed structural MRI, functional MRI (active tasks and resting state), and MEG data (active tasks and resting state), as well as derived scores from cognitive behavioural experiments spanning five broad domains (attention, emotion, action, language, and memory), and demographic and neuropsychological data. The dataset thus provides a depth of neurocognitive phenotyping that is currently unparalleled, enabling integrative analyses of age-related changes in brain structure, brain function, and cognition, and providing a testbed for novel analyses of multi-modal neuroimaging data.


Assuntos
Envelhecimento/fisiologia , Encéfalo , Cognição/fisiologia , Bases de Dados Factuais , Neuroimagem Funcional/estatística & dados numéricos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Magnetoencefalografia/estatística & dados numéricos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurociências/estatística & dados numéricos , Adulto Jovem
20.
Sci Data ; 3: 160102, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922621

RESUMO

Only a tiny fraction of the data and metadata produced by an fMRI study is finally conveyed to the community. This lack of transparency not only hinders the reproducibility of neuroimaging results but also impairs future meta-analyses. In this work we introduce NIDM-Results, a format specification providing a machine-readable description of neuroimaging statistical results along with key image data summarising the experiment. NIDM-Results provides a unified representation of mass univariate analyses including a level of detail consistent with available best practices. This standardized representation allows authors to relay methods and results in a platform-independent regularized format that is not tied to a particular neuroimaging software package. Tools are available to export NIDM-Result graphs and associated files from the widely used SPM and FSL software packages, and the NeuroVault repository can import NIDM-Results archives. The specification is publically available at: http://nidm.nidash.org/specs/nidm-results.html.


Assuntos
Mapeamento Encefálico/estatística & dados numéricos , Encéfalo/fisiologia , Disseminação de Informação/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Interpretação Estatística de Dados , Humanos , Armazenamento e Recuperação da Informação , Modelos Lineares , Metanálise como Assunto , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...