Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 287(19): 15826-35, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22362763

RESUMO

APOBEC3G (Apo3G) is a single-stranded (ss)DNA cytosine deaminase that eliminates HIV-1 infectivity by converting C → U in numerous small target motifs on the minus viral cDNA. Apo3G deaminates linear ssDNA in vitro with pronounced spatial asymmetry favoring the 3' → 5' direction. A similar polarity observed in vivo is believed responsible for initiating localized C → T mutational gradients that inactivate the virus. When compared with double-stranded (ds)DNA scanning enzymes, e.g. DNA glycosylases that excise rare aberrant bases, there is a paucity of mechanistic studies on ssDNA scanning enzymes. Here, we investigate ssDNA scanning and motif-targeting mechanisms for Apo3G using single molecule Förster resonance energy transfer. We address the specific issue of deamination asymmetry within the general context of ssDNA scanning mechanisms and show that Apo3G scanning trajectories, ssDNA contraction, and deamination efficiencies depend on motif sequence, location, and ionic strength. Notably, we observe the presence of bidirectional quasi-localized scanning of Apo3G occurring proximal to a 5' hot motif, a motif-dependent DNA contraction greatest for 5' hot > 3' hot > 5' cold motifs, and diminished mobility at low salt. We discuss the single molecule Förster resonance energy transfer data in terms of a model in which deamination polarity occurs as a consequence of Apo3G binding to ssDNA in two orientations, one that is catalytically favorable, with the other disfavorable.


Assuntos
Citidina Desaminase/metabolismo , DNA de Cadeia Simples/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Desaminase APOBEC-3G , Bacteriófago M13/genética , Sequência de Bases , Sítios de Ligação/genética , Biocatálise , Citidina Desaminase/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Desaminação , Corantes Fluorescentes/química , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato
2.
Mutagenesis ; 25(1): 63-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19901007

RESUMO

Translesion synthesis (TLS) on DNA is a process by which potentially cytotoxic replication-blocking lesions are bypassed, but at the risk of increased mutagenesis. The exact in vivo role of the individual TLS enzymes in Saccharomyces cerevisiae has been difficult to determine from previous studies due to differing results from the variety of systems used. We have generated a series of S.cerevisiae strains in which each of the TLS-related genes REV1, REV3, REV7, RAD30 and POL32 was deleted, and in which chromosomal apyrimidinic sites were generated during normal cell growth by the activity of altered forms of human uracil-DNA glycosylase that remove undamaged cytosines or thymines. Deletion of REV1, REV3 or REV7 resulted in slower growth dependent on (rev3Delta and rev7Delta) or enhanced by (rev1Delta) expression of the mutator glycosylases and a nearly complete abolition of glycosylase-induced mutagenesis. Deletion of POL32 resulted in cell death when the mutator glycosylases were expressed and, in their absence, diminished spontaneous mutagenesis. RAD30 appeared to be unnecessary for mutagenesis in response to abasic sites, as deleting this gene caused no significant change in either the mutation rates or the mutational spectra due to glycosylase expression.


Assuntos
Replicação do DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mutagênese/genética , Nucleotidiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Morte Celular/genética , Primers do DNA/genética , Replicação do DNA/fisiologia , Deleção de Genes , Humanos , Dados de Sequência Molecular , Mutagênese/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Uracila-DNA Glicosidase/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA