Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Br J Cancer ; 120(10): 975-981, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30992546

RESUMO

BACKGROUND: Combined focal adhesion kinase (FAK) and MEK inhibition may provide greater anticancer effect than FAK monotherapy. METHODS: This dose-finding phase Ib study (adaptive 3 + 3 design) determined the maximum tolerated dose (MTD) of trametinib and the FAK inhibitor GSK2256098 in combination. Eligible patients had mesothelioma or other solid tumours with probable mitogen activated protein kinase pathway activation. Adverse events (AEs), dose-limiting toxicities, disease progression and pharmacokinetics/pharmacodynamics were analysed. RESULTS: Thirty-four subjects were enrolled. The GSK2256098/trametinib MTDs were 500 mg twice daily (BID)/0.375 mg once daily (QD) (high/low) and 250 mg BID/0.5 mg QD (low/high). The most common AEs were nausea, diarrhoea, decreased appetite, pruritus, fatigue and rash; none were grade 4. Systemic exposure to trametinib increased when co-administered with GSK2256098, versus trametinib monotherapy; GSK2256098 pharmacokinetics were unaffected by concomitant trametinib. Median progression-free survival (PFS) was 11.8 weeks (95% CI: 6.1-24.1) in subjects with mesothelioma and was longer with Merlin-negative versus Merlin-positive tumours (15.0 vs 7.3 weeks). CONCLUSIONS: Trametinib exposure increased when co-administered with GSK2256098, but not vice versa. Mesothelioma patients with loss of Merlin had longer PFS than subjects with wild-type, although support for efficacy with this combination was limited. Safety profiles were acceptable up to the MTD.


Assuntos
Aminopiridinas/administração & dosagem , Proteína-Tirosina Quinases de Adesão Focal/genética , Ácidos Hidroxâmicos/administração & dosagem , Neoplasias/tratamento farmacológico , Piridonas/administração & dosagem , Pirimidinonas/administração & dosagem , Idoso , Aminopiridinas/efeitos adversos , Aminopiridinas/farmacocinética , Relação Dose-Resposta a Droga , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/classificação , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Humanos , Ácidos Hidroxâmicos/efeitos adversos , Ácidos Hidroxâmicos/farmacocinética , Masculino , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Mesotelioma/patologia , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/patologia , Intervalo Livre de Progressão , Piridonas/efeitos adversos , Piridonas/farmacocinética , Pirimidinonas/efeitos adversos , Pirimidinonas/farmacocinética
2.
Neuro Oncol ; 20(12): 1634-1642, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-29788497

RESUMO

Background: GSK2256098 is a novel oral focal adhesion kinase (FAK) inhibitor. Preclinical studies demonstrate growth inhibition in glioblastoma cell lines. However, rodent studies indicate limited blood-brain barrier (BBB) penetration. In this expansion cohort within a phase I study, the safety, tolerability, pharmacokinetics (PK), and clinical activity of GSK2256098 were evaluated in patients with recurrent glioblastoma. Biodistribution and kinetics of [11C]GSK2256098 were assessed in a substudy using positron-emission tomography (PET). Methods: Patients were treated with GSK2256098 until disease progression or withdrawal due to adverse events (AEs). Serial PK samples were collected on day 1. On a single day between days 9 and 20, patients received a microdose of intravenous [11C]GSK2256098 and were scanned with PET over 90 minutes with parallel PK sample collection. Response was assessed by MRI every 6 weeks. Results: Thirteen patients were treated in 3 dose cohorts (1000 mg, 750 mg, 500 mg; all dosed twice daily). The maximum tolerated dose was 1000 mg twice daily. Dose-limiting toxicities were related to cerebral edema. Treatment-related AEs (>25%) were diarrhea, fatigue, and nausea. Eight patients participated in the PET substudy, with [11C]GSK2256098 VT (volume of distribution) estimates of 0.9 in tumor tissue, 0.5 in surrounding T2 enhancing areas, and 0.4 in normal brain. Best response of stable disease was observed in 3 patients, including 1 patient on treatment for 11.3 months. Conclusions: GSK2256098 was tolerable in patients with relapsed glioblastoma. GSK2256098 crossed the BBB at low levels into normal brain, but at markedly higher levels into tumor, consistent with tumor-associated BBB disruption. Additional clinical trials of GSK2256098 are ongoing.


Assuntos
Aminopiridinas/uso terapêutico , Radioisótopos de Carbono/farmacocinética , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Ácidos Hidroxâmicos/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Adolescente , Adulto , Idoso , Aminopiridinas/farmacocinética , Estudos de Coortes , Feminino , Seguimentos , Glioblastoma/patologia , Humanos , Ácidos Hidroxâmicos/farmacocinética , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Prognóstico , Distribuição Tecidual , Adulto Jovem
3.
ACS Med Chem Lett ; 6(5): 531-6, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-26005528

RESUMO

In the search of PI3K p110α wild type and H1047R mutant selective small molecule leads, an encoded library technology (ELT) campaign against the desired target proteins was performed which led to the discovery of a selective chemotype for PI3K isoforms from a three-cycle DNA encoded library. An X-ray crystal structure of a representative inhibitor from this chemotype demonstrated a unique binding mode in the p110α protein.

4.
PLoS One ; 8(8): e72967, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009722

RESUMO

BET family proteins are epigenetic regulators known to control expression of genes involved in cell growth and oncogenesis. Selective inhibitors of BET proteins exhibit potent anti-proliferative activity in a number of hematologic cancer models, in part through suppression of the MYC oncogene and downstream Myc-driven pathways. However, little is currently known about the activity of BET inhibitors in solid tumor models, and whether down-regulation of MYC family genes contributes to sensitivity. Here we provide evidence for potent BET inhibitor activity in neuroblastoma, a pediatric solid tumor associated with a high frequency of MYCN amplifications. We treated a panel of neuroblastoma cell lines with a novel small molecule inhibitor of BET proteins, GSK1324726A (I-BET726), and observed potent growth inhibition and cytotoxicity in most cell lines irrespective of MYCN copy number or expression level. Gene expression analyses in neuroblastoma cell lines suggest a role of BET inhibition in apoptosis, signaling, and N-Myc-driven pathways, including the direct suppression of BCL2 and MYCN. Reversal of MYCN or BCL2 suppression reduces the potency of I-BET726-induced cytotoxicity in a cell line-specific manner; however, neither factor fully accounts for I-BET726 sensitivity. Oral administration of I-BET726 to mouse xenograft models of human neuroblastoma results in tumor growth inhibition and down-regulation MYCN and BCL2 expression, suggesting a potential role for these genes in tumor growth. Taken together, our data highlight the potential of BET inhibitors as novel therapeutics for neuroblastoma, and suggest that sensitivity is driven by pleiotropic effects on cell growth and apoptotic pathways in a context-specific manner.


Assuntos
Benzodiazepinas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas de Ligação a RNA/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzodiazepinas/química , Benzodiazepinas/toxicidade , Proteínas de Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Cinética , Camundongos , Modelos Moleculares , Conformação Molecular , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nature ; 478(7370): 529-33, 2011 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-21964340

RESUMO

Recurrent chromosomal translocations involving the mixed lineage leukaemia (MLL) gene initiate aggressive forms of leukaemia, which are often refractory to conventional therapies. Many MLL-fusion partners are members of the super elongation complex (SEC), a critical regulator of transcriptional elongation, suggesting that aberrant control of this process has an important role in leukaemia induction. Here we use a global proteomic strategy to demonstrate that MLL fusions, as part of SEC and the polymerase-associated factor complex (PAFc), are associated with the BET family of acetyl-lysine recognizing, chromatin 'adaptor' proteins. These data provided the basis for therapeutic intervention in MLL-fusion leukaemia, via the displacement of the BET family of proteins from chromatin. We show that a novel small molecule inhibitor of the BET family, GSK1210151A (I-BET151), has profound efficacy against human and murine MLL-fusion leukaemic cell lines, through the induction of early cell cycle arrest and apoptosis. I-BET151 treatment in two human leukaemia cell lines with different MLL fusions alters the expression of a common set of genes whose function may account for these phenotypic changes. The mode of action of I-BET151 is, at least in part, due to the inhibition of transcription at key genes (BCL2, C-MYC and CDK6) through the displacement of BRD3/4, PAFc and SEC components from chromatin. In vivo studies indicate that I-BET151 has significant therapeutic value, providing survival benefit in two distinct mouse models of murine MLL-AF9 and human MLL-AF4 leukaemia. Finally, the efficacy of I-BET151 against human leukaemia stem cells is demonstrated, providing further evidence of its potent therapeutic potential. These findings establish the displacement of BET proteins from chromatin as a promising epigenetic therapy for these aggressive leukaemias.


Assuntos
Cromatina/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/genética , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteômica , Transcrição Gênica/efeitos dos fármacos
6.
BMC Evol Biol ; 11: 4, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21208444

RESUMO

BACKGROUND: Phosphoinositide lipid kinases (PIKs) generate specific phosphorylated variants of phosatidylinositols (PtdIns) that are critical for second messenger signaling and cellular membrane remodeling. Mammals have 19 PIK isoforms spread across three major families: the PtIns 3-kinases (PI3Ks), PtdIns 4-kinases (PI4Ks), and PtdIns-P (PIP) kinases (PIPKs). Other eukaryotes have fewer yet varying PIK complements. PIKs are also an important, emerging class of drug targets for many therapeutic areas including cancer, inflammatory and metabolic diseases and host-pathogen interactions. Here, we report the genomic occurrences and evolutionary relationships or phylogenomics of all three PIK families across major eukaryotic groups and suggest potential ramifications for drug discovery. RESULTS: Our analyses reveal four core eukaryotic PIKs which are type III PIK4A and PIK4B, and at least one homolog each from PI3K (possibly PIK3C3 as the ancestor) and PIP5K families. We also applied evolutionary analyses to PIK disease ontology and drug discovery. Mutated PIK3CA are known to be oncogenic and several inhibitors are in anti-cancer clinical trials. We found conservation of activating mutations of PIK3CA in paralogous isoforms suggesting specific functional constraints on these residues. By mapping published compound inhibition data (IC50s) onto a phylogeny of PI3Ks, type II PI4Ks and distantly related, MTOR, ATM, ATR and PRKDC kinases, we also show that compound polypharmacology corresponds to kinase evolutionary relationships. Finally, we extended the rationale for drugs targeting PIKs of malarial Plasmodium falciparum, and the parasites, Leishmania sp. and Trypanosoma sp. by identifying those PIKs highly divergent from human homologs. CONCLUSION: Our phylogenomic analysis of PIKs provides new insights into the evolution of second messenger signaling. We postulate two waves of PIK diversification, the first in metazoans with a subsequent expansion in cold-blooded vertebrates that was post-emergence of Deutrostomia\Chordata but prior to the appearance of mammals. Reconstruction of the evolutionary relationships among these lipid kinases also adds to our understanding of their roles in various diseases and assists in their development as potential drug targets.


Assuntos
1-Fosfatidilinositol 4-Quinase/genética , Descoberta de Drogas , Eucariotos/classificação , Eucariotos/enzimologia , Evolução Molecular , Filogenia , Sistemas do Segundo Mensageiro , Transdução de Sinais , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Eucariotos/genética , Eucariotos/metabolismo , Genômica , Humanos , Dados de Sequência Molecular , Família Multigênica
7.
Protein Expr Purif ; 73(2): 167-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20457255

RESUMO

Phosphoinositide 3-kinases have been targeted for therapeutic research because they are key components of a cell signaling cascade controlling proliferation, growth, and survival. Direct activation of the PI3Kalpha pathway contributes to the development and progression of solid tumors in breast, endometrial, colon, ovarian, and gastric cancers. In the context of a drug discovery effort, the availability of a robust crystallographic system is a means to understand the subtle differences between ATP competitive inhibitor interactions with the active site and their selectivity against other PI3Kinase enzymes. To generate a suitable recombinant design for this purpose, a p85alpha-p110alpha fusion system was developed which enabled the expression and purification of a stoichiometrically homogeneous, constitutively active enzyme for structure determination with potent ATP competitive inhibitors (Raha et al., in preparation) [56]. This approach has yielded preparations with activity and inhibition characteristics comparable to those of the full-length PI3Kalpha from which X-ray diffracting crystals were grown with inhibitors bound in the active site.


Assuntos
Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Fusão Gênica Artificial , Baculoviridae/metabolismo , Sítios de Ligação , Células Cultivadas , Classe II de Fosfatidilinositol 3-Quinases/química , Classe II de Fosfatidilinositol 3-Quinases/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Desenho de Fármacos , Concentração Inibidora 50 , Modelos Moleculares , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Spodoptera/citologia , Spodoptera/metabolismo , Difração de Raios X
8.
Mol Cancer Ther ; 9(2): 279-91, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20124449

RESUMO

With genome-wide cancer studies producing large DNA sequence data sets, novel computational approaches toward better understanding the role of mutations in tumor survival and proliferation are greatly needed. Tumors are widely viewed to be influenced by Darwinian processes, yet molecular evolutionary analysis, invaluable in other DNA sequence studies, has seen little application in cancer biology. Here, we describe the phylogenetic analysis of 353 cancer cell lines based on multiple sequence alignments of 3,252 nucleotides and 1,170 amino acids built from the concatenation of variant codons and residues across 494 and 523 genes, respectively. Reconstructed phylogenetic trees cluster cell lines by shared DNA variant patterns rather than cancer tissue type, suggesting that tumors originating from diverse histologies have similar oncogenic pathways. A well-supported clade of 91 cancer cell lines representing multiple tumor types also had significantly different gene expression profiles from the remaining cell lines according to statistical analyses of mRNA microarray data. This suggests that phylogenetic clustering of tumor cell lines based on DNA variants might reflect functional similarities in cellular pathways. Positive selection analysis revealed specific DNA variants that might be potential driver mutations. Our study shows the potential role of molecular evolutionary analyses in tumor classification and the development of novel anticancer strategies.


Assuntos
Linhagem Celular Tumoral , Neoplasias/genética , Algoritmos , Análise por Conglomerados , Evolução Molecular , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Nucleotídeos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Análise de Sequência de DNA
9.
ACS Med Chem Lett ; 1(1): 30-4, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24900171

RESUMO

Inhibition of mitotic kinesins represents a novel approach for the discovery of a new generation of anti-mitotic cancer chemotherapeutics. We report here the discovery of the first potent and selective inhibitor of centromere-associated protein E (CENP-E) 3-chloro-N-{(1S)-2-[(N,N-dimethylglycyl)amino]-1-[(4-{8-[(1S)-1-hydroxyethyl]imidazo[1,2-a]pyridin-2-yl}phenyl)methyl]ethyl}-4-[(1-methylethyl)oxy]benzamide (GSK923295; 1), starting from a high-throughput screening hit, 3-chloro-4-isopropoxybenzoic acid 2. Compound 1 has demonstrated broad antitumor activity in vivo and is currently in human clinical trials.

10.
ACS Med Chem Lett ; 1(1): 39-43, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24900173

RESUMO

Phosphoinositide 3-kinase α (PI3Kα) is a critical regulator of cell growth and transformation, and its signaling pathway is the most commonly mutated pathway in human cancers. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of PI3K/AKT pathway inhibition. 2,4-Difluoro-N-{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl}benzenesulfonamide (GSK2126458, 1) has been identified as a highly potent, orally bioavailable inhibitor of PI3Kα and mTOR with in vivo activity in both pharmacodynamic and tumor growth efficacy models. Compound 1 is currently being evaluated in human clinical trials for the treatment of cancer.

11.
J Am Chem Soc ; 130(24): 7584-91, 2008 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-18491908

RESUMO

Human kinesin spindle protein (KSP)/hsEg5, a member of the kinesin-5 family, is essential for mitotic spindle assembly in dividing human cells and is required for cell cycle progression through mitosis. Inhibition of the ATPase activity of KSP leads to cell cycle arrest during mitosis and subsequent cell death. Ispinesib (SB-715992), a potent and selective inhibitor of KSP, is currently in phase II clinical trials for the treatment of multiple tumor types. Mutations that attenuate Ispinesib binding to KSP in vitro have been identified, highlighting the need for inhibitors that target different binding sites and inhibit KSP activity by novel mechanisms. We report here a small-molecule modulator, KSPA-1, that activates KSP-catalyzed ATP hydrolysis in the absence of microtubules yet inhibits microtubule-stimulated ATP hydrolysis by KSP. KSPA-1 inhibits cell proliferation and induces monopolar-spindle formation in tumor cells. Results from kinetic analyses, microtubule (MT) binding competition assays, and hydrogen/deuterium-exchange studies show that KSPA-1 does not compete directly for microtubule binding. Rather, this compound acts by driving a conformational change in the KSP motor domain and disrupts productive ATP turnover stimulated by MT. These findings provide a novel mechanism for targeting KSP and perhaps other mitotic kinesins.


Assuntos
Trifosfato de Adenosina/metabolismo , Hidrocarbonetos Fluorados/farmacologia , Cinesinas/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Pirróis/farmacologia , Difosfato de Adenosina/metabolismo , Ligação Competitiva , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Deutério/metabolismo , Humanos , Hidrogênio/metabolismo , Hidrólise/efeitos dos fármacos , Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Ligantes , Maleatos/farmacologia , Microtúbulos/metabolismo , Fuso Acromático/efeitos dos fármacos
12.
Biochem J ; 409(2): 519-24, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17877460

RESUMO

The PIK3CA gene, encoding the p110alpha catalytic subunit of Class IA PI3Ks (phosphoinositide 3-kinases), is frequently mutated in many human tumours. The three most common tumour-derived alleles of p110alpha, H1047R, E542K and E545K, were shown to potently activate PI3K signalling in human epithelial cells. In the present study, we examine the biochemical activity of the recombinantly purified PI3K oncogenic mutants. The kinetic characterizations of the wt (wild-type) and the three 'hot spot' PI3K mutants show that the mutants all have approx. 2-fold increase in lipid kinase activities. Interestingly, the phosphorylated IRS-1 (insulin receptor substrate-1) protein shows activation of the lipid kinase activity for the wt and H1047R but not E542K and E545K PI3Kalpha, suggesting that these mutations represent different mechanisms of lipid kinase activation and hence transforming activity in cancer cells.


Assuntos
Oncogenes , Fosfatidilinositol 3-Quinases/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Alelos , Domínio Catalítico , Classe I de Fosfatidilinositol 3-Quinases , Ativação Enzimática , Humanos , Proteínas Substratos do Receptor de Insulina , Cinética , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Tumorais Cultivadas
13.
Nat Chem Biol ; 3(11): 722-6, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17922005

RESUMO

The mitotic kinesin KSP (kinesin spindle protein, or Eg5) has an essential role in centrosome separation and formation of the bipolar mitotic spindle. Its exclusive involvement in the mitotic spindle of proliferating cells presents an opportunity for developing new anticancer agents with reduced side effects relative to antimitotics that target tubulin. Ispinesib is an allosteric small-molecule KSP inhibitor in phase 2 clinical trials. Mutations that attenuate ispinesib binding to KSP have been identified, which highlights the need for inhibitors that target different binding sites. We describe a new class of selective KSP inhibitors that are active against ispinesib-resistant forms of KSP. These ATP-competitive KSP inhibitors do not bind in the nucleotide binding pocket. Cumulative data from generation of resistant cells, site-directed mutagenesis and photo-affinity labeling suggest that they compete with ATP binding via a novel allosteric mechanism.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Estrutura Terciária de Proteína
14.
J Med Chem ; 50(20): 4939-52, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17725339

RESUMO

Kinesin spindle protein (KSP), an ATPase responsible for spindle pole separation during mitosis that is present only in proliferating cells, has become a novel and attractive anticancer target with potential for reduced side effects compared to currently available therapies. We report herein the discovery of the first known ATP-competitive inhibitors of KSP, which display a unique activity profile as compared to the known loop 5 (L5) allosteric KSP inhibitors that are currently under clinical evaluation. Optimization of this series led to the identification of biphenyl sulfamide 20, a potent KSP inhibitor with in vitro antiproliferative activity against human cells with either wild-type KSP (HCT116) or mutant KSP (HCT116 D130V). In a murine xenograft model with HCT116 D130V tumors, 20 showed significant antitumor activity following intraperitoneal dosing, providing in vivo proof-of-principle of the efficacy of an ATP-competitive KSP inhibitor versus tumors that are resistant to the other known KSP inhibitors.


Assuntos
Trifosfato de Adenosina/metabolismo , Antineoplásicos/síntese química , Compostos de Bifenilo/síntese química , Cinesinas/antagonistas & inibidores , Sulfonamidas/síntese química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacocinética , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Cinesinas/genética , Camundongos , Camundongos Nus , Mutação , Transplante de Neoplasias , Relação Estrutura-Atividade , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia
15.
Biochemistry ; 45(30): 9238-45, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16866370

RESUMO

Mdm2 negatively regulates p53 by inhibiting its transcriptional activity and promoting its degradation by functioning as an E3 ubiquitin ligase. The primary p53 binding site on mdm2 is located in its N-terminal domain. Through binding to p53 at its N-terminal transactivation domain, mdm2 directly blocks the transcriptional activation function of p53. We discovered that truncated mdm2 protein constructs without the N-terminal p53 binding domain are at least as active as full-length mdm2 in catalyzing p53 ubiquitination. Furthermore, the deletion of the central acidic domain significantly reduces the E3 ligase activity of mdm2 toward p53. We have also performed GST pull-down experiments to probe the direct binding of various mdm2 domain constructs toward full length p53 and found that mdm2 constructs without the N-terminal p53 binding domain retain the ability to bind to p53. Our kinetic and binding data localize the second p53 binding site between amino acids 211 and 361, including the acidic domain and the zinc finger region. Our work, consistent with other reports, suggests that the p53 tetramer interacts with at least two sites on mdm2. Although the interaction between the N-termini of mdm2 and p53 blocks the transactivation activity of p53, the interaction between the central domain of mdm2 and the core domain of p53 is critical for the ubiquitination and degradation of p53. This second mdm2-p53 interaction site represents an alternative target for small molecule modulators of the mdm2-p53 pathway.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Animais , Sítios de Ligação/genética , Linhagem Celular , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Imidazóis/química , Cinética , Piperazinas/química , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Deleção de Sequência , Spodoptera , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
16.
Methods Enzymol ; 399: 701-17, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16338390

RESUMO

Mdm2 is a negative regulator of p53 activity and functions as an E3 ubiquitin ligase of p53. Inhibition of mdm2 E3 ligase activity will block ubiquitination and subsequent proteasome-mediated degradation of p53, resulting in the stabilization of p53 protein that could lead to the restoration of its tumor-suppressor activity. This chapter describes quantitative biochemical assays for mdm2 E3 activity that can be applied to other ubiquitin-utilizing enzyme systems. Our unique assay format relies on the generation of labeled Ub-E2 conjugate that functions as a substrate for the E3 ligase enzyme. Reducing the E1-E2-E3 ubiquitin cascade to a single enzyme (E3) and bisubstrate (Ub-E2 and target protein) reaction makes it possible to carry out detailed biochemical characterization of the reaction mechanism, high-throughput screening to identify inhibitors of specific E3 ligases, and detailed characterization of the mode of inhibitor interactions with the target enzyme. In addition, preforming the Ub-E2 conjugate as an enzyme substrate for inhibitor screening minimizes interference from thiol-modifying compounds and from nucleotide analogs and other ATP-interfering compounds that might affect the E1 reaction. Using this type of format, we were able to identify small molecule inhibitors of mdm2 E3 ligase activity that are selective against E1 and other E3 ligases, including mdm2's own autoubiquitination activity. Detailed protocols on the labeling of Ub, the generation of Ub-E2, and the use of Ub-E2 in the E3 ligase reaction for inhibitor discovery and characterization are provided.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Desenho de Fármacos , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/química , Humanos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Ubiquitina/metabolismo
18.
Proc Natl Acad Sci U S A ; 99(23): 14734-9, 2002 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-12407176

RESUMO

The oncoprotein hdm2 ubiquitinates p53, resulting in the rapid degradation of p53 through the ubiquitin (Ub)-proteasome pathway. Hdm2-mediated destabilization and inactivation of p53 are thought to play a critical role in a number of human cancers. We have used an in vitro enzyme assay, monitoring hdm2-catalyzed Ub transfer from preconjugated Ub-Ubc4 to p53, to identify small molecule inhibitors of this enzyme. Three chemically distinct types of inhibitors were identified this way, each with potency in the micromolar range. All three types of compounds display selective inhibition of hdm2 E3 ligase activity, with little or no effect on other Ub-using enzymes. Most strikingly, these compounds do not inhibit the autoubiquitination activity of hdm2. Steady-state analysis reveals that all three classes behave as simple reversible inhibitors of the enzyme and that they are noncompetitive with respect to both substrates, Ub-Ubc4 and p53. Studies of the effects of combinations of two inhibitory molecules on hdm2 activity indicate that the three types of compounds bind in a mutually exclusive fashion, suggesting a common binding site on hdm2 for all of these inhibitors. These compounds establish the feasibility of selectively blocking hdm2-mediated ubiquitination of p53 by small molecule inhibitors. Selective inhibitors of hdm2 E3 ligase activity could provide a novel mechanism for the development of new chemotherapeutics for the treatment of human cancers.


Assuntos
Proteínas Nucleares , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases , Ubiquitina/metabolismo , Biotinilação , Proteínas de Ligação ao Cálcio/metabolismo , Catálise , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Cinética , Ligases/metabolismo , Modelos Biológicos , Ubiquitina-Proteína Ligases Nedd4 , Peptídeo Sintases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...