Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(9): 6221-6240, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33856792

RESUMO

The enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) is one of the more recently identified mammalian sources of H2S. A recent study identified several novel 3-MST inhibitors with micromolar potency. Among those, (2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one) or HMPSNE was found to be the most potent and selective. We now took the central core of this compound and modified the pyrimidone and the arylketone sides independently. A 63-compound library was synthesized; compounds were tested for H2S generation from recombinant 3-MST in vitro. Active compounds were subsequently tested to elucidate their potency and selectivity. Computer modeling studies have delineated some of the key structural features necessary for binding to the 3-MST's active site. Six novel 3-MST inhibitors were tested in cell-based assays: they exerted inhibitory effects in murine MC38 and CT26 colon cancer cell proliferation; the antiproliferative effect of the compound with the highest potency and best cell-based activity (1b) was also confirmed on the growth of MC38 tumors in mice.


Assuntos
Neoplasias do Colo/patologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Pirimidinonas/química , Pirimidinonas/farmacologia , Sulfurtransferases/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Sulfurtransferases/química , Sulfurtransferases/metabolismo
2.
Pharmacol Res ; 165: 105393, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484818

RESUMO

Hydrogen sulfide (H2S) is an important endogenous gaseous transmitter mediator, which regulates a variety of cellular functions in autocrine and paracrine manner. The enzymes responsible for the biological generation of H2S include cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). Increased expression of these enzymes and overproduction of H2S has been implicated in essential processes of various cancer cells, including the stimulation of metabolism, maintenance of cell proliferation and cytoprotection. Cancer cell identity is characterized by so-called "transition states". The progression from normal (epithelial) to transformed (mesenchymal) state is termed epithelial-to-mesenchymal transition (EMT) whereby epithelial cells lose their cell-to-cell adhesion capacity and gain mesenchymal characteristics. The transition process can also proceed in the opposite direction, and this process is termed mesenchymal-to-epithelial transition (MET). The current project was designed to determine whether inhibition of endogenous H2S production in colon cancer cells affects the EMT/MET balance in vitro. Inhibition of H2S biosynthesis in HCT116 human colon cancer cells was achieved either with aminooxyacetic acid (AOAA) or 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE). These inhibitors induced an upregulation of E-cadherin and Zonula occludens-1 (ZO-1) expression and downregulation of fibronectin expression, demonstrating that H2S biosynthesis inhibitors can produce a pharmacological induction of MET in colon cancer cells. These actions were functionally reflected in an inhibition of cell migration, as demonstrated in an in vitro "scratch wound" assay. The mechanisms involved in the action of endogenously produced H2S in cancer cells in promoting (or maintaining) EMT (or tonically inhibiting MET) relate, at least in part, in the induction of ATP citrate lyase (ACLY) protein expression, which occurs via upregulation of ACLY mRNA (via activation of the ACLY promoter). ACLY in turn, regulates the Wnt-ß-catenin pathway, an essential regulator of the EMT/MET balance. Taken together, pharmacological inhibition of endogenous H2S biosynthesis in cancer cells induces MET. We hypothesize that this may contribute to anti-cancer / anti-metastatic effects of H2S biosynthesis inhibitors.


Assuntos
ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Neoplasias do Colo/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Sulfeto de Hidrogênio/antagonistas & inibidores , ATP Citrato (pro-S)-Liase/metabolismo , Antineoplásicos/farmacologia , Western Blotting , Neoplasias do Colo/enzimologia , Neoplasias do Colo/metabolismo , Imunofluorescência , Células HCT116/efeitos dos fármacos , Células HCT116/enzimologia , Células HCT116/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
3.
Biochem Pharmacol ; 182: 114267, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33035509

RESUMO

BACKGROUND: Hydrogen sulfide (H2S) is an endogenous mammalian gasotransmitter. Cystathionine ß-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) are the principal enzymes responsible for its biogenesis. A recent yeast screen suggested that disulfiram (a well-known inhibitor of aldehyde dehydrogenase and a clinically used drug in the treatment of alcoholism) may inhibit CBS in a cell-based environment. However, prior studies have not observed any direct inhibition of CBS by disulfiram. We investigated the potential role of bioconversion of disulfiram to bis(N,N-diethyldithiocarbamate)-copper(II) complex (CuDDC) in the inhibitory effect of disulfiram on H2S production and assessed its effect in two human cell types with high CBS expression: HCT116 colon cancer cells and Down syndrome (DS) fibroblasts. METHODS: H2S production from recombinant human CBS, CSE and 3-MST was measured using the fluorescent H2S probe AzMC. Mouse liver homogenate (a rich source of CBS) was also employed to measure H2S biosynthesis. The interaction of copper with accessible protein cysteine residues was evaluated using the DTNB method. Cell proliferation and viability were measured using the BrdU and MTT methods. Cellular bioenergetics was evaluated by Extracellular Flux Analysis. RESULTS: While disulfiram did not exert any significant direct inhibitory effect on any of the H2S-producing enzymes, its metabolite, CuDDC was a potent inhibitor of CBS and CSE. The mode of its action is likely related to the complexed copper molecule. In cell-based systems, the effects of disulfiram were variable. In colon cancer cells, no significant effect of disulfiram was observed on H2S production or proliferation or viability. In contrast, in DS fibroblasts, disulfiram inhibited H2S production and improved proliferation and viability. Copper, on its own, failed to have any effects on either cell type, likely due to its low cell penetration. CuDDC inhibited H2S production in both cell types studied and exerted the functional effects that would be expected from a CBS inhibitor: inhibition of cell proliferation of cancer cells and a bell-shaped effect (stimulation of proliferation at low concentration and inhibition of these responses at higher concentration) in DS cells. Control experiments using a chemical H2S donor showed that, in addition to inhibiting CBS and CSE, part of the biological effects of CuDDC relates to a direct reaction with H2S, which occurs through its complexed copper. CONCLUSIONS: Disulfiram, via its metabolite CuDDC acts as an inhibitor of CBS and a scavenger of H2S, which, in turn, potently suppresses H2S levels in various cell types. Inhibition of H2S biosynthesis may explain some of the previously reported actions of disulfiram and CuDDC in vitro and in vivo. Disulfiram or CuDDC may be considered as potential agents for the experimental therapy of various pathophysiological conditions associated with H2S overproduction.


Assuntos
Inibidores de Acetaldeído Desidrogenases/farmacologia , Cobre/farmacologia , Cistationina beta-Sintase/antagonistas & inibidores , Dissulfiram/farmacologia , Ditiocarb/análogos & derivados , Compostos Organometálicos/farmacologia , Inibidores de Acetaldeído Desidrogenases/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Quelantes/metabolismo , Quelantes/farmacologia , Cobre/metabolismo , Cistationina beta-Sintase/metabolismo , Dissulfiram/metabolismo , Ditiocarb/metabolismo , Ditiocarb/farmacologia , Relação Dose-Resposta a Droga , Feminino , Células HCT116 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organometálicos/metabolismo
4.
Pharmacol Rev ; 72(4): 801-828, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32859763

RESUMO

Reactive oxygen species (ROS) have been correlated with almost every human disease. Yet clinical exploitation of these hypotheses by pharmacological modulation of ROS has been scarce to nonexistent. Are ROS, thus, irrelevant for disease? No. One key misconception in the ROS field has been its consideration as a rather detrimental metabolic by-product of cell metabolism, and thus, any approach eliminating ROS to a certain tolerable level would be beneficial. We now know, instead, that ROS at every concentration, low or high, can serve many essential signaling and metabolic functions. This likely explains why systemic, nonspecific antioxidants have failed in the clinic, often with neutral and sometimes even detrimental outcomes. Recently, drug development has focused, instead, on identifying and selectively modulating ROS enzymatic sources that in a given constellation cause disease while leaving ROS physiologic signaling and metabolic functions intact. As sources, the family of NADPH oxidases stands out as the only enzyme family solely dedicated to ROS formation. Selectively targeting disease-relevant ROS-related proteins is already quite advanced, as evidenced by several phase II/III clinical trials and the first drugs having passed registration. The ROS field is expanding by including target enzymes and maturing to resemble more and more modern, big data-enhanced drug discovery and development, including network pharmacology. By defining a disease based on a distinct mechanism, in this case ROS dysregulation, and not by a symptom or phenotype anymore, ROS pharmacology is leaping forward from a clinical underperformer to a proof of concept within the new era of mechanism-based precision medicine. SIGNIFICANCE STATEMENT: Despite being correlated to almost every human disease, nearly no ROS modulator has been translated to the clinics yet. Here, we move far beyond the old-fashioned misconception of ROS as detrimental metabolic by-products and suggest 1) novel pharmacological targeting focused on selective modulation of ROS enzymatic sources, 2) mechanism-based redefinition of diseases, and 3) network pharmacology within the ROS field, altogether toward the new era of ROS pharmacology in precision medicine.


Assuntos
Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/uso terapêutico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Oxirredução/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Molecules ; 25(16)2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824311

RESUMO

Cystathionine ß-synthase (CBS) is a key enzyme in the production of the signaling molecule hydrogen sulfide, deregulation of which is known to contribute to a range of serious pathological states. Involvement of hydrogen sulfide in pathways of paramount importance for cellular homeostasis renders CBS a promising drug target. An in-house focused library of heteroaromatic compounds was screened for CBS modulators by the methylene blue assay and a pyrazolopyridine derivative with a promising CBS inhibitory potential was discovered. The compound activity was readily comparable to the most potent CBS inhibitor currently known, aminoacetic acid, while a promising specificity over the related cystathionine γ-lyase was identified. To rule out any possibility that the inhibitor may bind the enzyme regulatory domain due to its high structural similarity with cofactor s-adenosylmethionine, differential scanning fluorimetry was employed. A sub-scaffold search guided follow-up screening of related compounds, providing preliminary structure-activity relationships with respect to requisites for efficient CBS inhibition by this group of heterocycles. Subsequently, a hypothesis regarding the exact binding mode of the inhibitor was devised on the basis of the available structure-activity relationships (SAR) and a deep neural networks analysis and further supported by induced-fit docking calculations.


Assuntos
Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/metabolismo , Inibidores Enzimáticos/farmacologia , Sulfeto de Hidrogênio/análise , Pirazóis/farmacologia , Piridinas/farmacologia , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Redes Neurais de Computação , Pirazóis/química , Piridinas/química , S-Adenosilmetionina/química , Relação Estrutura-Atividade
6.
Biomolecules ; 10(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365821

RESUMO

Cystathionine-ß-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.


Assuntos
Cistationina beta-Sintase/metabolismo , Síndrome de Down/metabolismo , Neoplasias/metabolismo , Animais , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/genética , Síndrome de Down/tratamento farmacológico , Síndrome de Down/enzimologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Sulfeto de Hidrogênio/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico
7.
Biomolecules ; 10(3)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183148

RESUMO

3-mercaptopyruvate sulfurtransferase (3-MST) has emerged as one of the significant sources of biologically active sulfur species in various mammalian cells. The current study was designed to investigate the functional role of 3-MST's catalytic activity in the murine colon cancer cell line CT26. The novel pharmacological 3-MST inhibitor HMPSNE was used to assess cancer cell proliferation, migration and bioenergetics in vitro. Methods included measurements of cell viability (MTT and LDH assays), cell proliferation and in vitro wound healing (IncuCyte) and cellular bioenergetics (Seahorse extracellular flux analysis). 3-MST expression was detected by Western blotting; H2S production was measured by the fluorescent dye AzMC. The results show that CT26 cells express 3-MST protein and mRNA, as well as several enzymes involved in H2S degradation (TST, ETHE1). Pharmacological inhibition of 3-MST concentration-dependently suppressed H2S production and, at 100 and 300 µM, attenuated CT26 proliferation and migration. HMPSNE exerted a bell-shaped effect on several cellular bioenergetic parameters related to oxidative phosphorylation, while other bioenergetic parameters were either unaffected or inhibited at the highest concentration of the inhibitor tested (300 µM). In contrast to 3-MST, the expression of CBS (another H2S producing enzyme which has been previously implicated in the regulation of various biological parameters in other tumor cells) was not detectable in CT26 cells and pharmacological inhibition of CBS exerted no significant effects on CT26 proliferation or bioenergetics. In summary, 3-MST catalytic activity significantly contributes to the regulation of cellular proliferation, migration and bioenergetics in CT26 murine colon cancer cells. The current studies identify 3-MST as the principal source of biologically active H2S in this cell line.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias do Colo/epidemiologia , Proteínas de Neoplasias/metabolismo , Fosforilação Oxidativa , Sulfurtransferases/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Camundongos
8.
Pharmacol Res ; 154: 104083, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-30500457

RESUMO

Hydrogen sulfide (H2S), produced by various endogenous enzyme systems, serves various biological regulatory roles in mammalian cells in health and disease. Over recent years, a new concept emerged in the field of H2S biology, showing that various cancer cells upregulate their endogenous H2S production, and utilize this mediator in autocrine and paracrine manner to stimulate proliferation, bioenergetics and tumor angiogenesis. Initial work identified cystathionine-beta-synthase (CBS) in many tumor cells as the key source of H2S. In other cells, cystathionine-gamma-lyase (CSE) has been shown to play a pathogenetic role. However, until recently, less attention has been paid to the third enzymatic source of H2S, 3-mercaptopyruvate sulfurtransferase (3-MST), even though several of its biological and biochemical features - e.g. its partial mitochondrial localization, its ability to produce polysulfides, which, in turn, can induce functionally relevant posttranslational protein modifications - makes it a potential candidate. Indeed, several lines of recent data indicate the potential role of the 3-MST system in cancer biology. In many cancers (e.g. colon adenocarcinoma, lung adenocarcinoma, urothelial cell carcinoma, various forms of oral carcinomas), 3-MST is upregulated compared to the surrounding normal tissue. According to in vitro studies, 3-MST upregulation is especially prominent in cancer cells that recover from oxidative damage and/or develop a multidrug-resistant phenotype. Emerging data with newly discovered pharmacological inhibitors of 3-MST, as well as data using 3-MST silencing approaches suggest that the 3-MST/H2S system plays a role in maintaining cancer cell proliferation; it may also regulate bioenergetic and cell-signaling functions. Many questions remain open in the field of 3-MST/cancer biology; the last section of current article highlights these open questions and lays out potential experimental strategies to address them.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Neoplasias/metabolismo , Sulfurtransferases/metabolismo , Animais , Humanos , Transdução de Sinais , Sulfetos/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(38): 18769-18771, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31481613

RESUMO

Down syndrome (DS) is associated with significant perturbances in mitochondrial function. Here we tested the hypothesis that the suppression of mitochondrial electron transport in DS cells is due to high expression of cystathionine-ß-synthase (CBS) and subsequent overproduction of the gaseous transmitter hydrogen sulfide (H2S). Fibroblasts from DS individuals showed higher CBS expression than control cells; CBS localization was both cytosolic and mitochondrial. DS cells produced significantly more H2S and polysulfide and exhibited a profound suppression of mitochondrial electron transport, oxygen consumption, and ATP generation. DS cells also exhibited slower proliferation rates. In DS cells, pharmacological inhibition of CBS activity with aminooxyacetate or siRNA-mediated silencing of CBS normalized cellular H2S levels, restored Complex IV activity, improved mitochondrial electron transport and ATP synthesis, and restored cell proliferation. Thus, CBS-derived H2S is responsible for the suppression of mitochondrial function in DS cells. When H2S overproduction is corrected, the tonic suppression of Complex IV is lifted, and mitochondrial electron transport is restored. CBS inhibition offers a potential approach for the pharmacological correction of DS-associated mitochondrial dysfunction.


Assuntos
Cistationina beta-Sintase/metabolismo , Síndrome de Down/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Sulfeto de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Ácido Amino-Oxiacético/farmacologia , Proliferação de Células , Células Cultivadas , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina beta-Sintase/genética , Síndrome de Down/patologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Metabolismo Energético , Feminino , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Mitocôndrias/enzimologia , Fosforilação Oxidativa , Consumo de Oxigênio , RNA Interferente Pequeno/genética , Sulfetos/metabolismo
10.
Redox Biol ; 26: 101272, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31330481

RESUMO

BACKGROUND: NADPH oxidases (NOX) are a family of flavoenzymes that catalyze the formation of superoxide anion radical (O2•-) and/or hydrogen peroxide (H2O2). As major oxidant generators, NOX are associated with oxidative damage in numerous diseases and represent promising drug targets for several pathologies. Various small molecule NOX inhibitors are used in the literature, but their pharmacological characterization is often incomplete in terms of potency, specificity and mode of action. EXPERIMENTAL APPROACH: We used cell lines expressing high levels of human NOX isoforms (NOX1-5, DUOX1 and 2) to detect NOX-derived O2•- or H2O2 using a variety of specific probes. NOX inhibitory activity of diphenylene iodonium (DPI), apocynin, diapocynin, ebselen, GKT136901 and VAS2870 was tested on NOX isoforms in cellular and membrane assays. Additional assays were used to identify potential off target effects, such as antioxidant activity, interference with assays or acute cytotoxicity. KEY RESULTS: Cells expressing active NOX isoforms formed O2•-, except for DUOX1 and 2, and in all cases activation of NOX isoforms was associated with the detection of extracellular H2O2. Among all molecules tested, DPI elicited dose-dependent inhibition of all isoforms in all assays, however all other molecules tested displayed interesting pharmacological characteristics, but did not meet criteria for bona fide NOX inhibitors. CONCLUSION: Our findings indicate that experimental results obtained with widely used NOX inhibitors must be carefully interpreted and highlight the challenge of developing reliable pharmacological inhibitors of these key molecular targets.


Assuntos
Inibidores Enzimáticos/farmacologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Catálise , Linhagem Celular , Cromatografia Líquida , Descoberta de Drogas , Inibidores Enzimáticos/química , Humanos , Peróxido de Hidrogênio/metabolismo , Isoenzimas , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Biológicos , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem
11.
Methods Mol Biol ; 1982: 103-111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172468

RESUMO

NADPH oxidases (NOX) are a family of transmembrane enzymes, which catalyze the formation of O2˙- and H2O2. Membrane fractions of leukocytes are highly enriched in the phagocyte NOX isoform (NOX2). This feat has allowed the development of a complex NOX2 cell-free assay, which has been a key tool for the understanding of the mode of action of NOX2, its biochemistry, pharmacology, and identification of NOX2-specific inhibitors. In addition to NOX2, there are six other NOX isoforms in humans, but cell-free assays of non-phagocytic oxidases are infrequently used, and their specificity has recently been debated. Here we describe a NOX5 cell-free assay. We present a method to purify the membranous component of cells stably transduced with NOX5 and to measure O2˙- in a high-throughput format (96-w or 384-w plates). The experimental description allows high-throughput screening of small molecules with limited cost.


Assuntos
Sistema Livre de Células , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , NADPH Oxidase 5/antagonistas & inibidores , Fracionamento Celular , Membrana Celular/enzimologia , Sistema Livre de Células/enzimologia , Descoberta de Drogas , Inibidores Enzimáticos/química , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , NADPH Oxidase 5/química , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , Oxirredução , Espécies Reativas de Oxigênio , Bibliotecas de Moléculas Pequenas , Análise Espectral
12.
Methods Mol Biol ; 1982: 233-241, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31172475

RESUMO

NADPH oxidases (NOX) are transmembrane enzymes, which catalyze the formation of reactive oxygen species (ROS). In humans and most mammals, the NOX family comprises seven members, namely, NOX1-5 and the dual oxidases DUOX1 and 2. The primary product of most NOX isoforms is the superoxide radical anion O2c-, which is rapidly dismutated in hydrogen peroxide (H2O2), while NOX4 and DUOX mostly generate H2O2. ROS are multifunctional molecules in tissues, and NOX-derived ROS cellular functions are as diverse as microbial killing (NOX2), thyroid hormone synthesis (DUOX2), or otoconia formation in the inner ear (NOX3). NOX are potential pharmacological targets in numerous diseases such as diabetes, fibrosis, and brain ischemia, and NOX inhibitors are currently under development. Here we describe two cellular assays to detect extracellular O2c- and H2O2 in cells overexpressing specific NOX isoforms and their subunits.


Assuntos
Ânions/metabolismo , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , Superóxidos/metabolismo , Animais , Células CHO , Cricetulus , Ensaios Enzimáticos , Células HEK293 , Humanos , Mutação com Perda de Função , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...