Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(5): 845-858, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31943082

RESUMO

SPECC1L mutations have been identified in patients with rare atypical orofacial clefts and with syndromic cleft lip and/or palate (CL/P). These mutations cluster in the second coiled-coil and calponin homology domains of SPECC1L and severely affect the ability of SPECC1L to associate with microtubules. We previously showed that gene-trap knockout of Specc1l in mouse results in early embryonic lethality. We now present a truncation mutant mouse allele, Specc1lΔC510, that results in perinatal lethality. Specc1lΔC510/ΔC510 homozygotes showed abnormal palate rugae but did not show cleft palate. However, when crossed with a gene-trap allele, Specc1lcGT/ΔC510 compound heterozygotes showed a palate elevation delay with incompletely penetrant cleft palate. Specc1lcGT/ΔC510 embryos exhibit transient oral epithelial adhesions at E13.5, which may delay shelf elevation. Consistent with oral adhesions, we show periderm layer abnormalities, including ectopic apical expression of adherens junction markers, similar to Irf6 hypomorphic mutants and Arhgap29 heterozygotes. Indeed, SPECC1L expression is drastically reduced in Irf6 mutant palatal shelves. Finally, we wanted to determine if SPECC1L deficiency also contributed to non-syndromic (ns) CL/P. We sequenced 62 Caucasian, 89 Filipino, 90 Ethiopian, 90 Nigerian and 95 Japanese patients with nsCL/P and identified three rare coding variants (p.Ala86Thr, p.Met91Iso and p.Arg546Gln) in six individuals. These variants reside outside of SPECC1L coiled-coil domains and result in milder functional defects than variants associated with syndromic clefting. Together, our data indicate that palate elevation is sensitive to deficiency of SPECC1L dosage and function and that SPECC1L cytoskeletal protein functions downstream of IRF6 in palatogenesis.


Assuntos
Fissura Palatina/patologia , Fatores Reguladores de Interferon/metabolismo , Mutação , Fosfoproteínas/fisiologia , Animais , Fissura Palatina/genética , Fissura Palatina/metabolismo , Feminino , Humanos , Fatores Reguladores de Interferon/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
2.
Birth Defects Res ; 109(1): 27-37, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28029220

RESUMO

BACKGROUND: Recent advances in genomics methodologies, in particular the availability of next-generation sequencing approaches have made it possible to identify risk loci throughout the genome, in particular the exome. In the current study, we present findings from an exome study conducted in five affected individuals of a multiplex family with cleft palate only. METHODS: The GEnome MINIng (GEMINI) pipeline was used to functionally annotate the single nucleotide polymorphisms, insertions and deletions. Filtering methods were applied to identify variants that are clinically relevant and present in affected individuals at minor allele frequencies (≤1%) in the 1000 Genomes Project single nucleotide polymorphism database, Exome Aggregation Consortium, and Exome Variant Server databases. The bioinformatics tool Systems Tool for Craniofacial Expression-Based Gene Discovery was used to prioritize cleft candidates in our list of variants, and Sanger sequencing was used to validate the presence of identified variants in affected and unaffected relatives. RESULTS: Our analyses approach narrowed the candidates down to the novel missense variant in ARHGAP29 (GenBank: NM_004815.3, NP_004806.3;c.1654T>C [p.Ser552Pro]. A functional assay in zebrafish embryos showed that the encoded protein lacks the activity possessed by its wild-type counterpart, and migration assays revealed that keratinocytes transfected with wild-type ARHGAP29 migrated faster than counterparts transfected with the p.Ser552Pro ARHGAP29 variant or empty vector (control). CONCLUSION: These findings reveal ARHGAP29 to be a regulatory protein essential for proper development of the face, identifies an amino acid that is key for this, and provides a potential new diagnostic tool.Birth Defects Research 109:27-37, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Fissura Palatina/genética , Proteínas Ativadoras de GTPase/genética , Alelos , Animais , Fenda Labial/genética , Biologia Computacional , Modelos Animais de Doenças , Exoma , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Frequência do Gene/genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Análise de Sequência de DNA/métodos , Sequenciamento do Exoma , Peixe-Zebra/embriologia , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...