Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 742213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340029

RESUMO

Background: Oral cavity cancer is still an important public health problem throughout the world. Oral squamous cell carcinomas (OSCCs) can be quite aggressive and metastatic, with a low survival rate and poor prognosis. However, this is usually related to the clinical stage and histological grade, and molecular prognostic markers for clinical practice are yet to be defined. Heparanase (HPSE1) is an endoglycosidase associated with extracellular matrix remodeling, and although involved in several malignancies, the clinical implications of HPSE1 expression in OSCCs are still unknown. Methods: We sought to investigate HPSE1 expression in a series of primary OSCCs and further explore whether its overexpression plays a relevant role in OSCC tumorigenesis. mRNA and protein expression analyses were performed in OSCC tissue samples and cell lines. A loss-of-function strategy using shRNA and a gain-of-function strategy using an ORF vector targeting HPSE1 were employed to investigate the endogenous modulation of HPSE1 and its effects on proliferation, apoptosis, adhesion, epithelial-mesenchymal transition (EMT), angiogenesis, migration, and invasion of oral cancer in vitro. Results: We demonstrated that HPSE1 is frequently upregulated in OSCC samples and cell lines and is an unfavorable prognostic indicator of disease-specific survival when combined with advanced pT stages. Moreover, abrogation of HPSE1 in OSCC cells significantly promoted apoptosis and inhibited proliferation, migration, invasion, and epithelial-mesenchymal transition by significantly decreasing the expression of N-cadherin and vimentin. Furthermore, a conditioned medium of HPSE1-downregulated cells resulted in reduced vascular endothelial growth. Conclusion: Our results confirm the overexpression of HPSE1 in OSCCs, suggest that HPSE1 expression correlates with disease progression as it is associated with several important biological processes for oral tumorigenesis, and can be managed as a prognostic marker for patients with OSCC.

2.
Front Pharmacol ; 13: 1098374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686704

RESUMO

Introduction: Oral cancer refers to malignant tumors, of which 90% are squamous cell carcinomas (OSCCs). These malignancies exhibit rapid progression, poor prognosis, and often mutilating therapeutical approaches. The determination of a prophylactic and/or therapeutic antitumor role of the polyphenolic extract Polypodium leucotomos(PL) would be relevant in developing new tools for prevention and treatment. Methods: We aimed to determine the antitumor effect of PL by treating OSCC cell lines with PL metabolites and evaluating its action during OSCC progression in vivo. Results: PL treatment successfully impaired cell cycling and proliferation, migration, and invasion, enhanced apoptosis, and modulated macrophage polarization associated with the tumoral immune-inflammatory response of tongue cancer cell lines (TSCC). PL treatment significantly decreased the expression of MMP1 (p < 0.01) and MMP2 (p < 0.001), and increased the expression of TIMP1 (p < 0.001) and TIMP2 (p < 0.0001) in these cells. The mesenchymal-epithelial transition phenotype was promoted in cells treated with PL, through upregulation of E-CAD (p < 0.001) and reduction of N-CAD (p < 0.05). PL restrained OSCC progression in vivo by inhibiting tumor volume growth and decreasing the number of severe dysplasia lesions and squamous cell carcinomas. Ki-67 was significantly higher expressed in tongue tissues of animals not treated with PL(p < 0.05), and a notable reduction in Bcl2 (p < 0.05) and Pcna (p < 0.05) cell proliferation-associated genes was found in dysplastic lesions and TSCCs of PL-treated mice. Finally, N-cad(Cdh2), Vim, and Twist were significantly reduced in tongue tissues treated with PL. Conclusion: PL significantly decreased OSCC carcinogenic processes in vitro and inhibited tumor progression in vivo. PL also appears to contribute to the modulation of immune-inflammatory oral tumor-associated responses. Taken together, these results suggest that PL plays an important antitumor role in processes associated with oral carcinogenesis and may be a potential phytotherapeutic target for the prevention and/or adjuvant treatment of TSCCs.

3.
J Cell Physiol ; 235(1): 587-598, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31254281

RESUMO

Laminin peptides influence cancer biology. We investigated the role of a laminin-derived peptide C16 regulating invadopodia molecules in human prostate cancer cells (DU145). C16 augmented invadopodia activity of DU145 cells, and stimulated expression Tks4, Tks5, cortactin, and membrane-type matrix metalloproteinase 1. Reactive oxygen species generation is also related to invadopodia formation. This prompted us to address whether C16 would induce reactive oxygen species generation in DU145 cells. Quantitative fluorescence and flow cytometry showed that the peptide C16 increased reactive oxygen species in DU145 cells. Furthermore, significant colocalization between Tks5 and reactive oxygen species was observed in C16-treated cells. Results suggested that the peptide C16 increased Tks5 and reactive oxygen species in prostate cancer cells. The role of C16 increasing Tks and reactive oxygen species are novel findings on invadopodia activity.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Laminina/farmacologia , Podossomos/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Humanos , Laminina/metabolismo , Masculino , Invasividade Neoplásica/patologia , Neoplasias da Próstata/metabolismo , Proteólise/efeitos dos fármacos
4.
Brain Res Bull ; 155: 67-80, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31756421

RESUMO

After peripheral axotomy, there is a selective retraction of synaptic terminals in contact with injured motoneurons. This process, which actively involves glial cells, is influenced by the expression of immune-related molecules. Since toll-like receptors (TLRs) are upregulated by astrocytes and microglia following lesions, they might be involved in synaptic plasticity processes. Therefore, we administered lipopolysaccharide (LPS) to enhance TLR4 expression in mice and studied retrograde changes in the spinal cord ventral horn following sciatic nerve crush. To this end, adult C57BL/6J male mice were subjected to unilateral sciatic nerve crush at the mid-thigh level and, after a survival time of seven and forty days (acute and chronic phases, respectively), the spinal cords were paraformaldehyde-fixed and dissected out for immunolabeling for synaptophysin, glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (Iba1). The results show that TLR4 upregulation leads to synaptophysin downregulation close to spinal motoneuron cell bodies, indicating increased synaptic elimination. LPS exposure also further increases astrogliosis and microglial reactions in the both ventral and dorsal horns, especially ipsilateral to nerve axotomy, compared to those in untreated mice. Notably, LPS administration to TLR4-/- mice produces results similar to those observed in untreated wild-type counterparts, reinforcing the role of this receptor in the glial response to injury. Therefore, our results suggest that the overexpression of the TLR4 receptor results in augmented astrogliosis/microglial reactions and the excessive loss of synapses postinjury, which may, in turn, affect the motoneuronal regenerative response and functionality. Additionally, treatment with LPS increases the expression of ß2-microglobulin, a subcomponent of MHC I. Importantly, the absence of TLR4 results in imbalanced axonal regeneration, inducing subsequent improvements and setbacks. In conclusion, our results show the involvement of TLR4 in the process of synaptic remodeling, indicating a new target for future research aimed at developing therapies for CNS and PNS repair.


Assuntos
Astrócitos/metabolismo , Microglia/metabolismo , Neurônios Motores/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Medula Espinal/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Compressão Nervosa , Plasticidade Neuronal , Traumatismos dos Nervos Periféricos/imunologia , Sinaptofisina/metabolismo
5.
J Cell Physiol ; 234(10): 19048-19058, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30924162

RESUMO

Prostate development and function are regulated by androgens. Epithelial cell apoptosis in response to androgen deprivation is caspase-9-dependent and peaks at Day 3 after castration. However, isolated epithelial cells survive in the absence of androgens. Znf142 showed an on-off expression pattern in intraepithelial CD68-positive macrophages, with the on-phase at Day 3 after castration. Rats treated with gadolinium chloride to deplete macrophages showed a significant drop in apoptosis, suggesting a causal relationship between macrophages and epithelial cell apoptosis. Intraepithelial M1-polarization was also limited to Day 3, and the inducible nitric oxide synthase (iNOS) knockout mice showed significantly less apoptosis than wild-type controls. The epithelial cells showed focal DNA double-strand breaks (DSB), 8-oxoguanine, and protein tyrosine-nitrosylation, fingerprints of exposure to peroxinitrite. Cultured epithelial cells induced M1-polarization and showed focal DSB and underwent apoptosis. The same phenomena were reproduced in LNCaP cells cocultured with Raw 264.7 macrophages. In conclusion, the M1 142 -macrophage (named after Znf142) attack causes activation of the intrinsic apoptosis pathway in epithelial cells after castration.


Assuntos
Apoptose/fisiologia , Células Epiteliais/metabolismo , Macrófagos/fisiologia , Estresse Oxidativo/fisiologia , Próstata/patologia , Antagonistas de Androgênios , Androgênios/metabolismo , Animais , Linhagem Celular , Gadolínio/farmacologia , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Próstata/citologia , Próstata/crescimento & desenvolvimento , Neoplasias da Próstata/patologia , Células RAW 264.7 , Ratos , Ratos Wistar , Transativadores/metabolismo , Fatores de Transcrição
6.
J Steroid Biochem Mol Biol ; 182: 95-105, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29709633

RESUMO

The androgen receptor (AR) promoter contains guanine-rich regions that are able to fold into polymorphic G-quadruplex (GQ) structures, and whose deletion decreases AR gene transcription. Our attention was focused on this region because of the frequent termination of sequencing reactions during promoter methylation studies. UV and circular dichroism (CD) spectroscopy of synthetic oligonucleotides encompassing these guanine-rich regions suggested a parallel quadruplex topology with three guanine quartets and three side loops in the three cases. Melting curves revealed a lower thermostability of the human GQ compared to the rat/mouse QG structures, which is attributed to the presence of a longer central loop in the former. One molecular model is proposed for the highly similar sequences in the rat/mouse. Due to the polymorphism resulting from possible arrangements of the guanine tracts, two models were derived for the human GQ. Molecular dynamics (MD) simulations determined that both models for the human GQ had higher flexibility and lower stability than the rodent GQ models. These properties result from the presence of a longer central loop in the human GQ models, which contains 11 and 13 nucleotides, in comparison to the 2-nucleotide long loop in the rat/mouse GQ. Overall, the unveiled structural and dynamics features provide sufficient detail for the intelligent design of drugs targeting the human AR promoter.


Assuntos
DNA/química , DNA/genética , Quadruplex G , Simulação de Dinâmica Molecular , Regiões Promotoras Genéticas , Receptores Androgênicos/química , Receptores Androgênicos/genética , Sequência de Bases , Humanos , Modelos Moleculares , Homologia de Sequência
7.
Prostate ; 78(2): 95-103, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29134671

RESUMO

BACKGROUND: Androgen deprivation results in massive apoptosis in the prostate gland. Macrophages are actively engaged in phagocytosing epithelial cell corpses. However, it is unknown whether microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis (LAP) is involved and contribute to prevent inflammation. METHODS: Flow cytometry, RT-PCR and immunohistochemistry were used to characterize the macrophage subpopulation residing in the epithelial layer of the rat ventral prostate (VP) after castration. Stereology was employed to determine variations in the number of ED1 and ED2. Mice were treated with either chloroquine or L-asparagine to block autophagy. RESULTS: M1 (iNOS-positive) and M2 macrophages (MRC1+ and ARG1+) were not found in the epithelium at day 5 after castration. The percentage of CD68+ (ED1) and CD163+ (ED2) phenotypes increased after castration but only CD68+ cells were present in the epithelium. RT-PCR showed increased content of the autophagy markers Bcl1 and LC3 after castration. In addition, immunohistochemistry showed the presence of LC3+ and ATG5+ cells in the epithelium. Double immunohistochemistry showed these cells to be CD68+ /LC3+ , compatible with the LAP phenotype. LC3+ cells accumulate significantly after castration. Chloroquine and L-asparagine administration caused inflammation of the glands at day 5 after castration. CONCLUSIONS: CD68+ macrophages phagocytose apoptotic cell corpses and activate the LAP pathway, thereby contributing to the preservation of a non-inflammed microenvironment. Marked inflammation was detected when autophagy blockers were administered to castrated animals.


Assuntos
Asparagina/farmacologia , Cloroquina/farmacologia , Macrófagos/imunologia , Orquiectomia/efeitos adversos , Fagocitose , Próstata , Prostatite/prevenção & controle , Androgênios/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Apoptose/imunologia , Microambiente Celular/imunologia , Modelos Animais de Doenças , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Orquiectomia/métodos , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Próstata/imunologia , Próstata/patologia , Neoplasias da Próstata/cirurgia , Prostatite/etiologia , Prostatite/metabolismo , Ratos
8.
Cell Biol Int ; 41(11): 1194-1202, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28206697

RESUMO

The prostate is a compound exocrine gland of the male reproductive tract universally present in mammals. It is highly responsive to androgen and can be committed by a variety of pathological complications as prostatitis, benign, and malignant proliferative changes, which may be intensified by aging. Prostate intensively turnover its extracellular matrix (ECM) either at homeostasis or disease which includes a dynamically change of glycosaminoglycan composition during the life of an individual. Among the different enzymes playing a role in such changes, heparanase-1 is responsible for cleaving heparan sulfate (HS) at a limited number of sites, clearly involved in tissue remodeling. Its activity has been strongly implicated in cell invasion associated with cancer metastasis, a consequence of the structural modification that loosens the ECM barrier. In the present review we focuses in some aspects of the prostate physiology and diseases, particular prostate cancer, evidencing how the HPSE-1 activity encompasses the relationship of both processes.


Assuntos
Glucuronidase/metabolismo , Próstata/enzimologia , Próstata/fisiopatologia , Animais , Exossomos , Matriz Extracelular/enzimologia , Glucuronidase/genética , Humanos , Masculino , Próstata/metabolismo
9.
Histochem Cell Biol ; 136(5): 609-15, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21892627

RESUMO

Heparanase-1 (HPSE-1) is an endoglycosidase that cleaves heparan sulfate. The physiological functions of HPSE-1 include embryo development, hair growth, wound healing, tumor growth, angiogenesis, metastasis, and inflammation. HPSE-1 expression was found to increase temporarily in the rat ventral prostate (VP) after castration. The promoter region of the Hpse-1 gene has estrogen-responsive elements, suggesting that the gene is regulated by estrogens. In this study, we investigated the expression of HPSE-1 in the VP of 90-day-old rats after neonatal exposure to a high dose of 17ß-estradiol. HPSE-1 was not found by immunohistochemistry in the epithelium of estrogenized animals. To determine whether inhibition of Hpse-1 expression in the epithelium was due to pre- or post-transcriptional regulation, epithelial cells were isolated by centrifugation in Percoll gradient and the presence of Hpse-1 mRNA was investigated by RT-PCR. Hpse-1 mRNA was not detected in the estrogenized animals. Considering that Hpse-1 transcription could be inhibited by DNA methylation, we used the methylation-sensitive restriction enzyme HpaII and PCR to show that a single CCGG site at position +185 was more frequently methylated in the epithelium of estrogenized than in control animals. Immunohistochemistry for 5-methylcytidine revealed that the epithelial cell nuclei in estrogenized animals were heavily methylated. These results suggest that Hpse-1 expression was blocked in the epithelial cells of the VP, by estrogen imprinting by a pre-transcriptional mechanism involving DNA methylation.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Polissacarídeo-Liases/antagonistas & inibidores , Próstata/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Metilação de DNA/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Epitélio/patologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Impressão Genômica/efeitos dos fármacos , Masculino , Próstata/enzimologia , Próstata/patologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Transcrição Gênica/efeitos dos fármacos
10.
PLoS Biol ; 8(8)2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20808781

RESUMO

Overnutrition caused by overeating is associated with insulin and leptin resistance through IKKbeta activation and endoplasmic reticulum (ER) stress in the hypothalamus. Here we show that physical exercise suppresses hyperphagia and associated hypothalamic IKKbeta/NF-kappaB activation by a mechanism dependent upon the pro-inflammatory cytokine interleukin (IL)-6. The disruption of hypothalamic-specific IL-6 action blocked the beneficial effects of exercise on the re-balance of food intake and insulin and leptin resistance. This molecular mechanism, mediated by physical activity, involves the anti-inflammatory protein IL-10, a core inhibitor of IKKbeta/NF-kappaB signaling and ER stress. We report that exercise and recombinant IL-6 requires IL-10 expression to suppress hyperphagia-related obesity. Moreover, in contrast to control mice, exercise failed to reverse the pharmacological activation of IKKbeta and ER stress in C3H/HeJ mice deficient in hypothalamic IL-6 and IL-10 signaling. Hence, inflammatory signaling in the hypothalamus links beneficial physiological effects of exercise to the central action of insulin and leptin.


Assuntos
Anti-Inflamatórios/metabolismo , Retículo Endoplasmático/patologia , Proteínas I-kappa B/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Anti-Inflamatórios/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Metabolismo Energético , Hiperfagia , Hipotálamo/fisiopatologia , Insulina/fisiologia , Interleucina-10/farmacologia , Interleucina-6/farmacologia , Leptina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Ratos , Ratos Wistar
11.
Cell Tissue Res ; 332(2): 307-15, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18278514

RESUMO

Androgen deprivation causes the rat ventral prostate to reduce to 10% of its original size by 21 days after castration. The regressive changes result from the loss of epithelial cells by apoptosis and marked reorganization of the stroma. We have investigated whether these changes are accompanied by variations in heparanase expression. The ventral prostate of castrated rats was collected and processed for the quantification of heparan sulfate (HS), for the measurement of heparanase expression and its localization by reverse transcription/polymerase chain reaction, Western blotting, and immunohistochemistry, and for transmission electron microscopy (TEM). Absolute HS content decreased significantly as early as day 7 after surgery. Heparanase mRNA peaked 7 days after castration. The heparanase proenzyme (65 kDa) and the active form (50 kDa) were identified and peaked on day 7 after castration; this coincided with maximum HS-degrading activity. Heparanase was located to the basolateral surface of epithelial cells and in the adjacent stroma. After castration, staining for heparanase was reduced in the epithelium and increased in the stroma. TEM revealed that the peak of heparanase expression at day 7 after castration was associated with extensive changes in the basement membrane of the epithelium, endothelium and smooth muscle cells involving cell shrinkage and/or deletion by apoptosis. These results suggest that heparanase expression increases after castration and correlates with a decreased amount of HS. This variation in heparanase expression is involved in tissue remodeling and in the control of the regressive pattern after 1 week of androgen deprivation.


Assuntos
Androgênios/metabolismo , Células Epiteliais/metabolismo , Glucuronidase/metabolismo , Heparitina Sulfato/metabolismo , Orquiectomia , Próstata/metabolismo , Próstata/ultraestrutura , Animais , Apoptose , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Tamanho do Órgão , Próstata/citologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...