Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 102(6-1): 062425, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33466110

RESUMO

In recent decades computer-aided technologies have become prevalent in medicine, however, cancer drugs are often only tested on in vitro cell lines from biopsies. We derive a full three-dimensional model of inhomogeneous -anisotropic diffusion in a tumor region coupled to a binary population model, which simulates in vivo scenarios faster than traditional cell-line tests. The diffusion tensors are acquired using diffusion tensor magnetic resonance imaging from a patient diagnosed with glioblastoma multiform. Then we numerically simulate the full model with finite element methods and produce drug concentration heat maps, apoptosis hotspots, and dose-response curves. Finally, predictions are made about optimal injection locations and volumes, which are presented in a form that can be employed by doctors and oncologists.


Assuntos
Neoplasias/patologia , Anisotropia , Imagem de Tensor de Difusão , Humanos , Neoplasias/diagnóstico por imagem
2.
Int J Numer Method Biomed Eng ; 36(3): e3301, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31883314

RESUMO

We present a novel preconditioning technique for Krylov subspace algorithms to solve fluid-structure interaction (FSI) linearized systems arising from finite element discretizations. An outer Krylov subspace solver preconditioned with a geometric multigrid (GMG) algorithm is used, where for the multigrid level subsolvers, a field-split (FS) preconditioner is proposed. The block structure of the FS preconditioner is derived using the physical variables as splitting strategy. To solve the subsystems originated by the FS preconditioning, an additive Schwarz (AS) block strategy is employed. The proposed FS preconditioner is tested on biomedical FSI applications. Both 2D and 3D simulations are carried out considering aneurysm and venous valve geometries. The performance of the FS preconditioner is compared with that of a second preconditioner of pure domain decomposition type.


Assuntos
Fenômenos Biomecânicos/fisiologia , Simulação por Computador , Algoritmos , Hemodinâmica/fisiologia
3.
Int J Numer Method Biomed Eng ; 35(2): e3156, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30226292

RESUMO

Venous valves are bicuspidal valves that ensure that blood in veins only flows back to the heart. To prevent retrograde blood flow, the two intraluminal leaflets meet in the center of the vein and occlude the vessel. In fluid-structure interaction (FSI) simulations of venous valves, the large structural displacements may lead to mesh deteriorations and entanglements, causing instabilities of the solver and, consequently, the numerical solution to diverge. In this paper, we propose an arbitrary Lagrangian-Eulerian (ALE) scheme for FSI simulations designed to solve these instabilities. A monolithic formulation for the FSI problem is considered, and due to the complexity of the operators, the exact Jacobian matrix is evaluated using automatic differentiation. The method relies on the introduction of a staggered in time velocity to improve stability, and on fictitious springs to model the contact force of the valve leaflets. Because the large structural displacements may compromise the quality of the fluid mesh as well, a smoother fluid displacement, obtained with the introduction of a scaling factor that measures the distance of a fluid element from the valve leaflet tip, guarantees that there are no mesh entanglements in the fluid domain. To further improve stability, a streamline upwind Petrov-Galerkin (SUPG) method is employed. The proposed ALE scheme is applied to a two-dimensional (2D) model of a venous valve. The presented simulations show that the proposed method deals well with the large structural displacements of the problem, allowing a reconstruction of the valve behavior in both the opening and closing phase.


Assuntos
Modelos Cardiovasculares , Válvulas Venosas/fisiologia , Algoritmos , Simulação por Computador , Módulo de Elasticidade , Humanos
4.
Int J Numer Method Biomed Eng ; 34(4): e2954, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29274303

RESUMO

We present fluid-structure interaction simulations of magnetic drug targeting (MDT) in blood flows. In this procedure, a drug is attached to ferromagnetic particles to externally direct it to a specific target after it is injected inside the body. The goal is to minimize the healthy tissue affected by the treatment and to maximize the number of particles that reach the target location. Magnetic drug targeting has been studied both experimentally and theoretically by several authors. In recent years, computational fluid dynamics simulations of MDT in blood flows have been conducted to obtain further insight on the combination of parameters that provide the best capture efficiency. However, to this day, no computational study addressed MDT in a fluid-structure interaction setting. With this paper, we aim to fill this gap and investigate the impact of the solid deformation on the capture efficiency.


Assuntos
Simulação por Computador , Sistemas de Liberação de Medicamentos , Hemorreologia/fisiologia , Magnetismo , Algoritmos , Artérias Carótidas/anatomia & histologia , Humanos , Reprodutibilidade dos Testes
5.
Langmuir ; 31(8): 2390-7, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25646688

RESUMO

In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials.


Assuntos
Termodinâmica , Tamanho da Partícula , Pressão , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA