Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(1): 17-34, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34893881

RESUMO

Tricyclo-DNA (tcDNA) is a conformationally constrained oligonucleotide analog that has demonstrated great therapeutic potential as antisense oligonucleotide (ASO) for several diseases. Like most ASOs in clinical development, tcDNA were modified with phosphorothioate (PS) backbone for therapeutic purposes in order to improve their biodistribution by enhancing association with plasma and cell protein. Despite the advantageous protein binding properties, systemic delivery of PS-ASO remains limited and PS modifications can result in dose limiting toxicities in the clinic. Improving extra-hepatic delivery of ASO is highly desirable for the treatment of a variety of diseases including neuromuscular disorders such as Duchenne muscular dystrophy. We hypothesized that conjugation of palmitic acid to tcDNA could facilitate the delivery of the ASO from the bloodstream to the interstitium of the muscle tissues. We demonstrate here that palmitic acid conjugation enhances the potency of tcDNA-ASO in skeletal and cardiac muscles, leading to functional improvement in dystrophic mice with significantly reduced dose of administered ASO. Interestingly, palmitic acid-conjugated tcDNA with a full phosphodiester backbone proved effective with a particularly encouraging safety profile, offering new perspectives for the clinical development of PS-free tcDNA-ASO for neuromuscular diseases.


Assuntos
Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/química , Ácido Palmítico/química , Animais , Terapia Genética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/farmacocinética , Distribuição Tecidual
2.
Mol Ther Methods Clin Dev ; 17: 1037-1047, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32462052

RESUMO

Gene therapy and antisense approaches hold promise for the treatment of Duchenne muscular dystrophy (DMD). The advantages of both therapeutic strategies can be combined by vectorizing antisense sequences into an adeno-associated virus (AAV) vector. We previously reported the efficacy of AAV-U7 small nuclear RNA (U7snRNA)-mediated exon skipping in the mdx mouse, the dys - /utr - mouse, and the golden retriever muscular dystrophy (GRMD) dog model. In this study, we examined the therapeutic potential of an AAV-U7snRNA targeting the human DMD exon 51, which could be applicable to 13% of DMD patients. A single injection of AAV9-U7 exon 51 (U7ex51) induces widespread and sustained levels of exon 51 skipping, leading to significant restoration of dystrophin and improvement of the dystrophic phenotype in the mdx52 mouse. However, levels of dystrophin re-expression are lower than the skipping levels, in contrast with previously reported results in the mdx mouse, suggesting that efficacy of exon skipping may vary depending on the targeted exon. Additionally, while low levels of exon skipping were measured in the brain, the dystrophin protein could not be detected, in line with a lack of improvement of their abnormal behavioral fear response. These results thus confirm the high therapeutic potential of the AAV-mediated exon-skipping approach, yet the apparent discrepancies between exon skipping and protein restoration levels suggest some limitations of this experimental model.

3.
Mol Ther Nucleic Acids ; 19: 371-383, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31881528

RESUMO

Tricyclo-DNA (tcDNA) antisense oligonucleotides (ASOs) hold promise for therapeutic splice-switching applications and the treatment of Duchenne muscular dystrophy (DMD) in particular. We have previously reported the therapeutic potential of tcDNA-ASO in mouse models of DMD, highlighting their unique pharmaceutical properties and unprecedented uptake in many tissues after systemic delivery, including the heart and central nervous system. Following these encouraging results, we developed phosphorothioate (PS)-modified tcDNA-ASOs targeting the human dystrophin exon 51 (H51). Preliminary evaluation of H51 PS-tcDNA in mice resulted in unexpected acute toxicity following intravenous administration of the selected candidate. In vivo and in vitro assays revealed complement activation, prolonged coagulation times, and platelet activation, correlating with the observed toxicity. In this study, we identify a novel PS-tcDNA sequence-specific toxicity induced by the formation of homodimer-like structures and investigate the therapeutic potential of a detoxified PS-tcDNA targeting exon 51. Modification of the H51-PS-tcDNA sequence, while maintaining target specificity through wobble pairing, abolished the observed toxicity by preventing homodimer formation. The resulting detoxified wobble-tcDNA candidate did not affect coagulation or complement pathways any longer nor activated platelets in vitro and was well tolerated in vivo in mice, confirming the possibility to detoxify specific tcDNA-ASO candidates successfully.

4.
Nucleic Acid Ther ; 29(3): 148-160, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31009315

RESUMO

Antisense oligonucleotides (ASOs) hold promise for therapeutic splice switching correction for genetic diseases, in particular for Duchenne muscular dystrophy (DMD), for which ASO-exon skipping represents one of the most advanced therapeutic strategies. We have previously reported the therapeutic potential of tricyclo-DNA (tcDNA) in mouse models of DMD, highlighting the unique pharmaceutical properties and unprecedented uptake in many tissues after systemic delivery, including the heart and central nervous system. TcDNA-ASOs demonstrate an encouraging safety profile and no particular class-related toxicity, however, when administered in high doses for several months, mild renal toxicity is observed secondary to predictable phosphorothioate (PS)-ASO accumulation in kidneys. In this study, we investigate the influence of the relative content of PS linkages in tcDNA-ASOs on exon skipping efficacy. Mdx mice were injected intravenously once weekly for 4 weeks with tcDNA carrying various amounts of PS linkages (0%, 25%, 33%, 50%, 67%, 83%, and 100%). The results indicate that levels of exon-23 skipping and dystrophin rescue increase with the number of PS linkages in most skeletal muscles except in the heart. As expected, plasma coagulation times are shortened with decreasing PS content, and tcDNA-protein binding in serum directly correlates with the number of PS linkages on the tcDNA backbone. Altogether, these data contribute in establishing the appropriate sulfur content within the tcDNA backbone for maximal efficacy and minimal toxicity of the oligonucleotide.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Fosforotioatos/farmacologia , Animais , Modelos Animais de Doenças , Éxons/efeitos dos fármacos , Coração/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Fosforotioatos/genética , Ligação Proteica/efeitos dos fármacos , Enxofre/química
5.
Hum Mol Genet ; 27(R2): R163-R172, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771317

RESUMO

Duchenne muscular dystrophy (DMD) is a fatal genetic disorder characterized by progressive muscle wasting that has currently no cure. Exon-skipping strategy represents one of the most promising therapeutic approaches that aim to restore expression of a shorter but functional dystrophin protein. The antisense field has remarkably progress over the last years with recent accelerated approval of the first antisense oligonucleotide-based therapy for DMD, Exondys 51, though the therapeutic benefit remains to be proved in patients. Despite clinical advances, the poor effective delivery to target all muscle remains the main hurdle for antisense drug therapy. This review describes the antisense-based exon-skipping approach for DMD, from proof-of-concept to first marketed drug. We discuss the main obstacles to achieve a successful exon-skipping therapy and the latest advances of the international community to develop more powerful chemistries and more sophisticated delivery systems in order to increase potency, bioavailability and safety. Finally, we highlight the importance of collaborative efforts and early dialogue between drug developers and regulatory agencies in order to overcome difficulties, find appropriate outcome markers and collect useful data.


Assuntos
Processamento Alternativo/genética , Distrofia Muscular de Duchenne/genética , RNA Antissenso/uso terapêutico , Animais , Distrofina/genética , Éxons/genética , Terapia Genética , Humanos , Morfolinos/genética , Morfolinos/farmacologia , Oligonucleotídeos Antissenso/genética , Splicing de RNA/genética , RNA Antissenso/genética
6.
Biomedicines ; 6(1)2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29271929

RESUMO

Antisense Oligonucleotides (ASOs) represent very attractive therapeutic compounds for the treatment of numerous diseases. The antisense field has remarkably progressed over the last few years with the approval of the first antisense drugs and with promising developments of more potent and nuclease resistant chemistries. Despite these recent clinical successes and advances in chemistry and design, effective delivery of ASOs to their target tissues remains a major issue. This review will describe the latest advances obtained with the tricyclo-DNA (tcDNA) chemistry which displays unique pharmacological properties and unprecedented uptake in many tissues after systemic administration. We will examine the variety of therapeutic approaches using both fully modified tcDNA-ASOs and gapmers, including splice switching applications, correction of aberrant splicing, steric blocking strategies and targeted gene knock-down mediated by RNase H recruitment. We will then discuss the merits and potential liabilities of the tcDNA chemistry in the context of ASO drug development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...