Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36013809

RESUMO

Biodegradation is among the most common issues affecting Cultural Heritage stone materials in outdoor environments. In recent years, the application of chemical agents with biocidal activity has been the most usual practice when dealing with biofilm removal. In outdoor environments, the use of these biocides is not effective enough, since the materials are constantly exposed to environmental agents and atmospheric pollutants. Thus, it becomes necessary to protect the surface of Cultural Heritage works with antimicrobial coatings to either prevent or at least limit future colonization. In this study, innovative biocides-both natural and synthetic-were applied on a Roman mosaic located in the Archaeological Park of Ostia Antica to compare their effectiveness in removing the biological degradation affecting it. In addition, an antimicrobial coating called "SI-QUAT" was applied and analyzed in situ. SI-QUAT has recently entered the market for its prevention activity against biocolonization. The biocidal activity of these products was tested and monitored using different analytical portable instruments, such as the multispectral system, the spectrocolorimeter, and the bioluminometer. The analyses showed that promising results can be obtained using the combination of the biocide and the protective effect of Preventol® RI50 and SI-QUAT.

2.
Methods Protoc ; 5(3)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35645345

RESUMO

Bio-colonization is a dynamic and multiphasic process headed by microorganisms. Conventional treatments to process affected stone materials include chemical biocides, whose formulations are mainly composed of quaternary ammonium salts(QAs), reported to be toxic for human health, dangerous for the environment, and not biodegradable. Accordingly, novel green and eco-friendly products are a promising alternative to treat stone materials deteriorated by microorganism colonization. In this study, the efficacy of pure essential oils (EOs) and a mix of EOs was assessed in situ and compared to a conventional biocide based on QAs, and two commercially green products based on EOs, which were taken as references, through application on a mosaic located at the Archaeological Park of Ostia Antica (Rome). The EO biocide efficacy was analyzed by ultraviolet induced luminescence, spectro-colorimetry and bio-luminometry analyses while the possibility of their permanence on simulated substrate was studied by FTIR spectroscopy. It was observed by FTIR analysis, that EOs considered volatile can leave a residue after the application; typical fingerprint bands at about 2926, 1510, and 1455 cm-1 were recorded in the EO spectra. Every tested oil was confirmed to have a biocide action although minimal in relation to the most conventional products based on QAs. The synergy of the essential oils revealed positive results, showing a stronger biocide efficacy. Further investigation should be carried out to develop the method of application and study of essential oils on cultural heritage.

3.
Methods Protoc ; 5(3)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35736553

RESUMO

In this study, the investigation of the oil painting on canvas I Tesori del Mare made by Plinio Nomellini in 1901 is presented. The aim of the research was threefold: the examination of the state of conservation in view of the restoration treatment, together with the identification of the causes of degradation and the study of the artistic technique. During the years, the artwork underwent several cleaning and fixing interventions, resulting in a patchy appearance of the surface. Nevertheless, the presence of consistent liftings persists, while the protective coating shows uneven chromatic alteration, both requiring further analysis. Multispectral imaging allowed for better visualization of the figuration's structure and the restored areas. The combined use of Raman spectroscopy, Fourier Transform Infrared spectroscopy in the Attenuated Total Reflection mode (FT-IR ATR), and Scanning Electron Microscopy coupled with an Energy Dispersive Spectroscopy (SEM/EDS) enabled better understanding of the stratigraphy through the identification of some pigments, the binder, and the aged varnish layer on the top. SEM/EDS highlighted the presence of zinc in both the ground layer and the paint layers. Furthermore, FT-IR ATR spectroscopy showed peaks related to metal soaps such as zinc stearate, which are known to cause severe delamination of the paint layers, explaining the recurring lifting issues. Eventually, the varnish layer was found to be acrylic resin, presumably mixed with varnishes applied in past restoration treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...