Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-474244

RESUMO

The emergence of SARS-CoV-2 variants of concern (VOCs) that escape pre-existing antibody neutralizing responses increases the need for vaccines that target conserved epitopes and induce cross-reactive B- and T-cell responses. We used a computational approach and sequence alignment analysis to design a new-generation subunit vaccine targeting conserved sarbecovirus B- and T-cell epitopes from Spike (S) and Nucleocapsid (N) to antigen-presenting cells expressing CD40 (CD40.CoV2). We demonstrate the potency of CD40.CoV2 to elicit high levels of cross-neutralizing antibodies against SARS-CoV-2, VOCs, and SARS-CoV-1 in K18-hACE2 transgenic mice, associated with improved viral control and survival after challenge. In addition, we demonstrate the potency of CD40.CoV2 in vitro to recall human multi-epitope, functional, and cytotoxic SARS-CoV-2 S- and N-specific T-cell responses that are unaffected by VOC mutations and cross-reactive with SARS-CoV-1 and, to a lesser extent, MERS epitopes. Overall, these findings provide a framework for a pan-sarbecovirus vaccine.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-466418

RESUMO

The definition of correlates of protection is critical for the development of next generation SARS-CoV-2 vaccine platforms. Here, we propose a new framework for identifying mechanistic correlates of protection based on mathematical modelling of viral dynamics and data mining of immunological markers. The application to three different studies in non-human primates evaluating SARS-CoV-2 vaccines based on CD40-targeting, two-component spike nanoparticle and mRNA 1273 identifies and quantifies two main mechanisms that are a decrease of rate of cell infection and an increase in clearance of infected cells. Inhibition of RBD binding to ACE2 appears to be a robust mechanistic correlate of protection across the three vaccine platforms although not capturing the whole biological vaccine effect. The model shows that RBD/ACE2 binding inhibition represents a strong mechanism of protection which required significant reduction in blocking potency to effectively compromise the control of viral replication. One Sentence SummaryA framework for modelling the immune control of viral dynamics is applied to quantify the effect of several SARS-CoV-2 vaccine platforms and to define mechanistic correlates of protection.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20246934

RESUMO

COVID-19 SARS-CoV-2 infection exhibits wide inter-individual clinical variability, from silent infection to severe disease and death. The identification of high-risk patients is a continuing challenge in routine care. We aimed to identify factors that influence clinical worsening. We analyzed 52 cell populations, 71 analytes, and RNA-seq gene expression in the blood of severe patients from the French COVID cohort upon hospitalization (n = 61). COVID-19 patients showed severe abnormalities of 27 cell populations relative to healthy donors (HDs). Forty-two cytokines, neutrophil chemo-attractants, and inflammatory components were elevated in COVID-19 patients. Supervised gene expression analyses showed differential expression of genes for neutrophil activation, interferon signaling, T- and B-cell receptors, EIF2 signaling, and ICOS-ICOSL pathways in COVID-19 patients. Unsupervised analysis confirmed the prominent role of neutrophil activation, with a high abundance of CD177, a specific neutrophil activation marker. CD177 was the most highly differentially-expressed gene contributing to the clustering of severe patients and its abundance correlated with CD177 protein serum levels. CD177 levels were higher in COVID-19 patients from both the French and "confirmatory" Swiss cohort (n = 203) than in HDs (P< 0.01) and in ICU than non-ICU patients (P< 0.001), correlating with the time to symptoms onset (P = 0.002). Longitudinal measurements showed sustained levels of serum CD177 to discriminate between patients with the worst prognosis, leading to death, and those who recovered (P = 0.01). These results highlight neutrophil activation as a hallmark of severe disease and CD177 assessment as a reliable prognostic marker for routine care.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20230508

RESUMO

A large proportion of SARS-CoV-2 infected individuals remains asymptomatic. Little is known about the extent and quality of their antiviral humoral response. Here, we analyzed antibody functions in 52 asymptomatic infected individuals, 119 mild and 21 hospitalized COVID-19 patients. We measured anti-Spike antibody levels with the S-Flow assay and mapped SARS-CoV-2 Spike- and N-targeted regions by Luminex. Neutralization, complement deposition and Antibody-Dependent Cellular Cytotoxicity (ADCC) were evaluated using replication-competent SARS-CoV-2 or reporter cell systems. We show that COVID-19 sera mediate complement deposition and kill infected cells by ADCC. Sera from asymptomatic individuals neutralize the virus, activate ADCC and trigger complement deposition. Antibody levels and activities are slightly lower in asymptomatic individuals. The different functions of the antibodies are correlated, independently of disease severity. Longitudinal samplings show that antibody functions follow similar kinetics of induction and contraction, with minor variations. Overall, asymptomatic SARS-CoV-2 infection elicits polyfunctional antibodies neutralizing the virus and targeting infected cells. - Sera from convalescent COVID-19 patients activate the complement and kill infected cells by ADCC. - Asymptomatic and symptomatic SARS-CoV-2-infected individuals harbor polyfunctional antibodies. - Antibody levels and functions are slightly lower in asymptomatic individuals - The different antiviral activities of anti-Spike antibodies are correlated regardless of disease severity. - Functions of anti-Spike antibodies have similar kinetics of induction and contraction.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20087239

RESUMO

We report a longitudinal analysis of the immune response associated with a fatal case of COVID-19. This patient exhibited a rapid evolution towards multiorgan failure. SARS-CoV-2 was detected in multiple nasopharyngeal, blood, and pleural samples, despite antiviral and immunomodulator treatment. Clinical evolution in the blood was marked by an increase (2-3 fold) in differentiated effector T cells expressing exhaustion (PD-1) and senescence (CD57) markers, an expansion of antibody-secreting cells, a 15-fold increase in {gamma}{delta} T-cell and proliferating NK-cell populations, and the total disappearance of monocytes, suggesting lung trafficking. In the serum, waves of a proinflammatory cytokine storm, Th1 and Th2 activation, and markers of T-cell exhaustion, apoptosis, cell cytotoxicity, and endothelial activation were observed until the fatal outcome. This case underscores the need for well-designed studies to investigate complementary approaches to control viral replication, the source of the hyperinflammatory status, and immunomodulation to target the pathophysiological response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...