Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 35(6): e21640, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33991130

RESUMO

Certain species of pathogenic bacteria damage tissues by secreting cholesterol-dependent cytolysins, which form pores in the plasma membranes of animal cells. However, reducing cholesterol protects cells against these cytolysins. As the first committed step of cholesterol biosynthesis is catalyzed by squalene synthase, we explored whether inhibiting this enzyme protected cells against cholesterol-dependent cytolysins. We first synthesized 22 different nitrogen-containing bisphosphonate molecules that were designed to inhibit squalene synthase. Squalene synthase inhibition was quantified using a cell-free enzyme assay, and validated by computer modeling of bisphosphonate molecules binding to squalene synthase. The bisphosphonates were then screened for their ability to protect HeLa cells against the damage caused by the cholesterol-dependent cytolysin, pyolysin. The most effective bisphosphonate reduced pyolysin-induced leakage of lactate dehydrogenase into cell supernatants by >80%, and reduced pyolysin-induced cytolysis from >75% to <25%. In addition, this bisphosphonate reduced pyolysin-induced leakage of potassium from cells, limited changes in the cytoskeleton, prevented mitogen-activated protein kinases cell stress responses, and reduced cellular cholesterol. The bisphosphonate also protected cells against another cholesterol-dependent cytolysin, streptolysin O, and protected lung epithelial cells and primary dermal fibroblasts against cytolysis. Our findings imply that treatment with bisphosphonates that inhibit squalene synthase might help protect tissues against pathogenic bacteria that secrete cholesterol-dependent cytolysins.


Assuntos
Colesterol/metabolismo , Citotoxinas/efeitos adversos , Difosfonatos/farmacologia , Inibidores Enzimáticos/farmacologia , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Fibroblastos/citologia , Substâncias Protetoras/farmacologia , Células A549 , Proteínas de Bactérias/efeitos adversos , Toxinas Bacterianas/efeitos adversos , Proliferação de Células , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Células HeLa , Proteínas Hemolisinas/efeitos adversos , Humanos , Estreptolisinas/efeitos adversos
2.
J Steroid Biochem Mol Biol ; 206: 105794, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33246156

RESUMO

Bile acids are the end products of cholesterol metabolism secreted into bile. They are essential for the absorption of lipids and lipid soluble compounds from the intestine. Here we have identified a series of unusual Δ5-unsaturated bile acids in plasma and urine of patients with Smith-Lemli-Opitz syndrome (SLOS), a defect in cholesterol biosynthesis resulting in elevated levels of 7-dehydrocholesterol (7-DHC), an immediate precursor of cholesterol. Using liquid chromatography - mass spectrometry (LC-MS) we have uncovered a pathway of bile acid biosynthesis in SLOS avoiding cholesterol starting with 7-DHC and proceeding through 7-oxo and 7ß-hydroxy intermediates. This pathway also occurs to a minor extent in healthy humans, but elevated levels of pathway intermediates could be responsible for some of the features SLOS. The pathway is also active in SLOS affected pregnancies as revealed by analysis of amniotic fluid. Importantly, intermediates in the pathway, 25-hydroxy-7-oxocholesterol, (25R)26-hydroxy-7-oxocholesterol, 3ß-hydroxy-7-oxocholest-5-en-(25R)26-oic acid and the analogous 7ß-hydroxysterols are modulators of the activity of Smoothened (Smo), an oncoprotein that mediates Hedgehog (Hh) signalling across membranes during embryogenesis and in the regeneration of postembryonic tissue. Computational docking of the 7-oxo and 7ß-hydroxy compounds to the extracellular cysteine rich domain of Smo reveals that they bind in the same groove as both 20S-hydroxycholesterol and cholesterol, known activators of the Hh pathway.


Assuntos
Ácidos e Sais Biliares/biossíntese , Colesterol/biossíntese , Desidrocolesteróis/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Colesterol/genética , Colesterol/metabolismo , Cromatografia Líquida , Desidrocolesteróis/química , Humanos , Lipogênese/genética , Espectrometria de Massas , Simulação de Acoplamento Molecular , Síndrome de Smith-Lemli-Opitz/genética , Síndrome de Smith-Lemli-Opitz/patologia
3.
J Pharmacol Exp Ther ; 374(2): 295-307, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32393528

RESUMO

Gefitinib and erlotinib are epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) with activity against metastatic non-small cell lung cancer. Aldehyde oxidase-1 (AOX1) is a cytosolic drug-metabolizing enzyme. We conducted an experimental and molecular docking study on the effect of gefitinib, erlotinib, and select metabolites on the in vitro catalytic activity of AOX1, as assessed by carbazeran 4-oxidation, and determined the impact of AOX1 inhibition on hepatic metabolism of zaleplon and methotrexate. Gefitinib, desmorpholinopropylgefitinib, erlotinib, desmethylerlotinib, and didesmethylerlotinib inhibited human hepatic cytosolic carbazeran 4-oxidation by a competitive mode, with inhibition constants in submicromolar or low micromolar concentrations. Desmethylgefitinib did not affect AOX1 catalytic activity. A similar pattern was obtained when investigated with human kidney cytosol or recombinant AOX1. The differential effect of gefitinib on human, rat, and mouse hepatic AOX1 catalytic activity suggests species-dependent chemical inhibition of AOX1. Erlotinib was considerably more potent than gefitinib in decreasing hepatic cytosolic zaleplon 5-oxidation and methotrexate 7-oxidation. Molecular docking analyses provided structural insights into the interaction between EGFR-TKIs and AOX1, with key residues and bonds identified, which provided favorable comparison and ranking of potential inhibitors. Based on the US Food and Drug Administration guidance to assess the risk of drug-drug interactions, the calculated R1 values indicate that further investigations are warranted to determine whether gefitinib and erlotinib impact AOX1-mediated drug metabolism in vivo. Overall, erlotinib desmethylerlotinib, didesmethylerlotinib, gefitinib, and desmorpholinopropylgefitinib are potent inhibitors of human AOX1 catalytic function and hepatic metabolism of zaleplon and methotrexate, potentially affecting drug efficacy or toxicity. SIGNIFICANCE STATEMENT: As epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), gefitinib and erlotinib are first-line pharmacotherapy for metastatic non-small cell lung cancer. Our experimental findings indicate that clinically relevant concentrations of gefitinib, desmorpholinopropylgefitinib, erlotinib, desmethylerlotinib, and didesmethylerlotinib, but not desmethylgefitinib, inhibit human aldehyde oxidase (AOX1) catalytic activity and hepatic cytosolic metabolism of zaleplon and methotrexate. Molecular docking analysis provide structural insights into the key AOX1 interactions with these EGFR-TKIs. Our findings may trigger improved strategies for new EGFR-TKI design and development.


Assuntos
Acetamidas/metabolismo , Aldeído Oxidase/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Gefitinibe/farmacologia , Fígado/efeitos dos fármacos , Metotrexato/metabolismo , Simulação de Acoplamento Molecular , Pirimidinas/metabolismo , Aldeído Oxidase/química , Aldeído Oxidase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Cloridrato de Erlotinib/metabolismo , Gefitinibe/metabolismo , Humanos , Fígado/metabolismo , Conformação Proteica
4.
J Pharmacol Exp Ther ; 371(1): 75-86, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31289113

RESUMO

Tamoxifen, raloxifene, and nafoxidine are selective estrogen receptor modulators (SERMs) reported to inhibit the catalytic activity of human aldehyde oxidase 1 (AOX1). How these drugs interact with AOX1 and whether other SERMs inhibit this drug-metabolizing enzyme are not known. Therefore, a detailed in vitro and in silico study involving parent drugs and their analogs was conducted to investigate the effect of specific SERMs, particularly acolbifene, bazedoxifene, and lasofoxifene on AOX1 catalytic activity, as assessed by carbazeran 4-oxidation, an AOX1-selective catalytic marker. The rank order in the potency (based on IC50 values) of AOX1 inhibition by SERMs was raloxifene > bazedoxifene ∼ lasofoxifene > tamoxifen > acolbifene. Inhibition of liver cytosolic AOX1 by bazedoxifene, lasofoxifene, and tamoxifen was competitive, whereas that by raloxifene was noncompetitive. Loss of 1-azepanylethyl group increased the inhibitory potency of bazedoxifene, whereas the N-oxide group decreased it. The 7-hydroxy group and the substituted pyrrolidine ring attached to the tetrahydronaphthalene structure contributed to AOX1 inhibition by lasofoxifene. These results are supported by molecular-docking simulations in terms of predicted binding modes, encompassing binding orientation and efficiency, and analysis of key interactions, particularly hydrogen bonds. The extent of AOX1 inhibition by bazedoxifene was increased by estrone sulfate and estrone. In summary, SERMs differentially inhibited human AOX1 catalytic activity. Structural features of bazedoxifene and lasofoxifene contributed to AOX1 inhibition, whereas those of acolbifene rendered it considerably less susceptible to AOX1 inhibition. Overall, our novel biochemical findings and molecular-docking analyses provide new insights into the interaction between SERMs and AOX1. SIGNIFICANCE STATEMENT: Aldehyde oxidase (AOX1) is a molybdo-flavoprotein and has emerged as a drug-metabolizing enzyme of potential therapeutic importance because drugs have been identified as AOX1 substrates. Selective estrogen receptor modulators (SERM), which are drugs used to treat and prevent various conditions, differentially inhibit AOX1 catalytic activity. Structural features of bazedoxifene and lasofoxifene contribute to AOX1 inhibition, whereas those of acolbifene render it considerably less susceptible to AOX1 inhibition. Our novel biochemical findings, together with molecular- docking analyses, provide new insights into the differential inhibitory effect of SERMs on the catalytic activity of human AOX1, how SERMs bind to AOX1, and increase our understanding of the AOX1 pharmacophore in the inhibition of AOX1 by drugs and other chemicals.


Assuntos
Aldeído Oxidase/antagonistas & inibidores , Indóis/farmacologia , Simulação de Acoplamento Molecular , Pirrolidinas/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tetra-Hidronaftalenos/farmacologia , Aldeído Oxidase/química , Aldeído Oxidase/metabolismo , Sítios de Ligação , Feminino , Humanos , Fígado/enzimologia , Masculino , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...