Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Inorg Chem ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507258

RESUMO

The synthesis, luminescence, and electrochemical properties of the Ce(III) compound, [(C5Me5)2(2,6-iPr2C6H3O)Ce(THF)], 1, were investigated. Based on the electrochemical data, treatment of 1 with CuX (X = Cl, Br, I) results in the formation of the corresponding Ce(IV) complexes, [(C5Me5)2(2,6-iPr2C6H3O)Ce(X)]. Each complex has been characterized using NMR, IR, and UV-vis spectroscopy as well as structurally determined using X-ray crystallography. Additionally, the treatment of [(C5Me5)2(2,6-iPr2C6H3O)Ce(Br)] with AgF results in the formation of the putative [(C5Me5)2(2,6-iPr2C6H3O)Ce(F)]. The electronic structure of these Ce(IV)-X complexes was investigated by bond analyses and the Ce(IV)-F moiety using quantum chemistry NMR calculations.

2.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38497474

RESUMO

Treating 195Pt nuclear magnetic resonance parameters in solution remains a considerable challenge from a quantum chemistry point of view, requiring a high level of theory that simultaneously takes into account the relativistic effects, the dynamic treatment of the solvent-solute system, and the dynamic electron correlation. A combination of Car-Parrinello molecular dynamics (CPMD) and relativistic calculations based on two-component zeroth order regular approximation spin-orbit Kohn-Sham (2c-ZKS) and four-component Dirac-Kohn-Sham (4c-DKS) Hamiltonians is performed to address the solvent effect (water) on the conformational changes and JPtPt1 coupling. A series of bridged PtIII dinuclear complexes [L1-Pt2(NH3)4(Am)2-L2]n+ (Am = α-pyrrolidonate and pivalamidate; L = H2O, Cl-, and Br-) are studied. The computed Pt-Pt coupling is strongly dependent on the conformational dynamics of the complexes, which, in turn, is correlated with the trans influence among axial ligands and with the angle N-C-O from the bridging ligands. The J-coupling is decomposed in terms of dynamic contributions. The decomposition reveals that the vibrational and explicit solvation contributions reduce JPtPt1 of diaquo complexes (L1 = L2 = H2O) in comparison to the static gas-phase magnitude, whereas the implicit solvation and bulk contributions correspond to an increase in JPtPt1 in dihalo (L1 = L2 = X-) and aquahalo (L1 = H2O; L2 = X-) complexes. Relativistic treatment combined with CPMD shows that the 2c-ZKS Hamiltonian performs as well as 4c-DKS for the JPtPt1 coupling.

3.
ACS Appl Mater Interfaces ; 16(14): 17857-17869, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533949

RESUMO

Electron-rich organocerium complexes (C5Me4H)3Ce and [(C5Me5)2Ce(ortho-oxa)], with redox potentials E1/2 = -0.82 V and E1/2 = -0.86 V versus Fc/Fc+, respectively, were reacted with fullerene (C60) in different stoichiometries to obtain molecular materials. Structurally characterized cocrystals: [(C5Me4H)3Ce]2·C60 (1) and [(C5Me5)2Ce(ortho-oxa)]3·C60 (2) of C60 with cerium-based, molecular rare earth precursors are reported for the first time. The extent of charge transfer in 1 and 2 was evaluated using a series of physical measurements: FT-IR, Raman, solid-state UV-vis-NIR spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and magnetic susceptibility measurements. The physical measurements indicate that 1 and 2 comprise the cerium(III) oxidation state, with formally neutral C60 as a cocrystal in both cases. Pressure-dependent periodic density functional theory calculations were performed to study the electronic structure of 1. Inclusion of a Hubbard-U parameter removes Ce f states from the Fermi level, opens up a band gap, and stabilizes FM/AFM magnetic solutions that are isoenergetic because of the large distances between the Ce(III) cations. The electronic structure of this strongly correlated Mott insulator-type system is reminiscent of the well-studied Ce2O3.

4.
Chem Sci ; 15(6): 2181-2196, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38332836

RESUMO

This study demonstrates the application of 103Rh solid-state NMR (SSNMR) spectroscopy to inorganic and organometallic coordination compounds, in combination with relativistic density functional theory (DFT) calculations of 103Rh chemical shift tensors and their analysis with natural bond orbital (NBO) and natural localized molecular orbital (NLMO) protocols, to develop correlations between 103Rh chemical shift tensors, molecular structure, and Rh-ligand bonding. 103Rh is one of the least receptive NMR nuclides, and consequently, there are very few reports in the literature. We introduce robust 103Rh SSNMR protocols for stationary samples, which use the broadband adiabatic inversion-cross polarization (BRAIN-CP) pulse sequence and wideband uniform-rate smooth-truncation (WURST) pulses for excitation, refocusing, and polarization transfer, and demonstrate the acquisition of 103Rh SSNMR spectra of unprecedented signal-to-noise and uniformity. The 103Rh chemical shift tensors determined from these spectra are complemented by NBO/NLMO analyses of contributions of individual orbitals to the 103Rh magnetic shielding tensors to understand their relationship to structure and bonding. Finally, we discuss the potential for these experimental and theoretical protocols for investigating a wide range of materials containing the platinum group elements.

5.
Chemistry ; 30(25): e202400390, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38381600

RESUMO

Reaction of [CuH(PPh3)]6 with 1 equiv. of Tl(OTf) results in formation of [Cu6TlH6(PPh3)6][OTf] ([1]OTf]), which can be isolated in good yields. Variable-temperature 1H NMR spectroscopy, in combination with density functional theory (DFT) calculations, confirms the presence of a rare Tl-H orbital interaction. According to DFT, the 1H chemical shift of the Tl-adjacent hydride ligands of [1]+ includes 7.7 ppm of deshielding due to spin-orbit effects from the heavy Tl atom. This study provides valuable new insights into a rare class of metal hydrides, given that [1][OTf] is only the third isolable species reported to contain a Tl-H interaction.

6.
Inorg Chem ; 63(4): 2082-2089, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38207278

RESUMO

Ab initio molecular dynamics (AIMD) sampling followed by relativistic density functional theory (DFT) 199Hg NMR calculations were performed for Hg organometallic complexes in water, dimethyl sulfoxide, and chloroform. The spin-orbit coupling, a relativistic effect, is a key factor for predicting δ(Hg) and 1J(Hg-C) accurately, in conjunction with a dynamic treatment of the systems. Good agreement between the theoretical and experimental results is reached by adopting implicit (based on a continuum model) and explicit (solvent molecules treated quantum mechanically) solvation models. Broader trends appearing in the experimental data available in the literature are reproduced by the calculations, and therefore, quantum chemistry is able to assist in the assignment and interpretation of 199Hg NMR data. Less pronounced trends, such as changes in the 199Hg chemical shift in different systems with the same atom types bound to Hg, are too weak to be predicted reliably by the current state-of-the-art theoretical methods based on AIMD sampling and relativistic DFT with hybrid functionals for NMR calculations.

7.
Inorg Chem ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788299

RESUMO

Reaction of [UO2Cl2(THF)2]2 with in situ generated LiFmes (FmesH = 1,3,5-(CF3)3C6H3) in Et2O resulted in the formation of the uranyl aryl complexes [Li(THF)3][UO2(Fmes)3] ([Li(THF)3][1]) and [Li(Et2O)3(THF)][UO2(Fmes)3] ([Li(Et2O)3(THF)][1]) in good to moderate yields after crystallization from hexanes and Et2O, respectively. Both complexes were characterized by X-ray crystallography and NMR spectroscopy. DFT calculations reveal that the Cispo resonance in [1]- exhibits a deshielding of 51 ppm from spin-orbit coupling effects originating at uranium, which indicates an appreciable covalency in the U-C bonding interaction.

8.
Inorg Chem ; 62(39): 15891-15901, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37721450

RESUMO

BaPuO3 and SrPuO3 were synthesized, and their structures were refined in the orthorhombic space group Pbnm, a common distortion from the classic Pm3̅m cubic perovskite. Magnetic-susceptibility measurements, obtained as a function of temperature over the range of 1.8-320 K, exhibit temperature-dependent behavior, with evidence of long-range magnetic order at temperatures higher than their lanthanide and actinide analogues: BaPuO3 below 164(1) K and SrPuO3 below 76(1) K. Effective moments of 1.66(10)µB for BaPuO3 and 1.84(8)µB for SrPuO3 were obtained by fitting their paramagnetic susceptibilities using the Curie-Weiss law. Both are below the free-ion value of 2.68 µB expected for a Pu4+ 5I4 ground level. Ab initio wave function calculations, performed at the relativistic complete active space level including spin-orbit coupling and with an embedded cluster approach that neglects interactions between Pu centers, were used to generate embedded-cluster Pu4+ magnetic susceptibilities. The calculations agree well with experimental data at higher temperatures, providing evidence that a single-ion representation is sufficient to account for the observed paramagnetic behavior without the need to invoke charge transfer, disproportionation, strong covalent bonding, or other more complex electronic behavior.

9.
Inorg Chem ; 62(36): 14505-14506, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37624367
11.
J Chem Theory Comput ; 19(20): 7077-7096, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37458314

RESUMO

This paper summarizes developments in the NWChem computational chemistry suite since the last major release (NWChem 7.0.0). Specifically, we focus on functionality, along with input blocks, that is accessible in the current stable release (NWChem 7.2.0) and in the "master" development branch, interfaces to quantum computing simulators, interfaces to external libraries, the NWChem github repository, and containerization of NWChem executable images. Some ongoing developments that will be available in the near future are also discussed.

12.
Nat Commun ; 14(1): 4307, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463900

RESUMO

Actinide-ligand bonds with high multiplicities remain poorly understood. Decades ago, an effect known as 6p pushing from below (PFB) was proposed to enhance actinide covalency. A related effect-also poorly understood-is inverse trans influence (ITI). The present computational study of actinide-ligand covalent interactions with high bond multiplicities quantifies the energetic contributions from PFB and identifies a hitherto overlooked fourth bonding interaction for 2nd-row ligands in the studied organometallic systems. The latter are best described by a terminal O/N ligand exhibiting quadruple bonding interactions with the actinide. The 4th interaction may be characterized as a multi-center or charge-shift bond involving the trans ligand. It is shown in this work that the 4th bonding interaction is a manifestation of ITI, assisted by PFB, and provides a long-sought missing piece in the understanding of actinide chemistry.

13.
J Am Chem Soc ; 145(24): 13384-13391, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279382

RESUMO

This study confirms the hypothesis that [MnCl3(OPPh3)2] (1) and acetonitrile-solvated MnCl3 (i.e., [MnCl3(MeCN)x]) can be used as synthons to prepare Mn(III) chloride complexes with facially coordinating ligands. This was achieved through the preparation and characterization of six new {MnIIICl} complexes using anionic ligands TpH (tris(pyrazolyl)borate) and TpMe (tris(3,5-dimethylpyrazolyl)borate). The MnIII-chloride dissociation and association equilibria (Keq) and MnIII/II reduction potentials were quantified in DCM. These two thermochemical parameters (Keq and E1/2), in addition to the known Cl-atom reduction potential in DCM, enabled the quantification of the Mn-Cl bond dissociation (homolysis) free energy of 21 and 23 ± 7 kcal/mol at room temperature for R = H and Me, respectively. These are in reasonable agreement with the bond dissociation free energy (BDFEM-Cl) of 34 ± 6 kcal/mol calculated using density functional theory. The BDFEM-Cl of 1 was also calculated (25 ± 6 kcal/mol). These energies were used in predictive C-H bond reactivity.

14.
J Chem Theory Comput ; 19(13): 3929-3942, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37345733

RESUMO

This work explores an efficient and numerically accurate procedure to obtain the Fukui function from fractional orbital occupation calculations. The energy- and density-linearity conditions are investigated in the context of using optimally tuned range-separated hybrid functionals for the calculation of the Fukui function. The methodology is then used to study the reactivity of organic radicals exhibiting energetic inversion between the singly occupied molecular orbital (SOMO) and the highest occupied molecular orbital (HOMO), that is, SOMO-HOMO inversion (SHI). The Fukui function correctly identifies the reactive sites of the molecules investigated, but additional computed quantities, such as radical reaction energies and vertical ionization potentials, are needed to distinguish SHI systems from conventional radicals.

15.
Nat Commun ; 14(1): 3134, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253731

RESUMO

Lanthanides in the trivalent oxidation state are typically described using an ionic picture that leads to localized magnetic moments. The hierarchical energy scales associated with trivalent lanthanides produce desirable properties for e.g., molecular magnetism, quantum materials, and quantum transduction. Here, we show that this traditional ionic paradigm breaks down for praseodymium in the tetravalent oxidation state. Synthetic, spectroscopic, and theoretical tools deployed on several solid-state Pr4+-oxides uncover the unusual participation of 4f orbitals in bonding and the anomalous hybridization of the 4f1 configuration with ligand valence electrons, analogous to transition metals. The competition between crystal-field and spin-orbit-coupling interactions fundamentally transforms the spin-orbital magnetism of Pr4+, which departs from the Jeff = 1/2 limit and resembles that of high-valent actinides. Our results show that Pr4+ ions are in a class on their own, where the hierarchy of single-ion energy scales can be tailored to explore new correlated phenomena in quantum materials.

16.
J Chem Theory Comput ; 19(20): 6933-6991, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37216210

RESUMO

The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.

17.
J Phys Chem Lett ; 14(21): 4983-4989, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37220345

RESUMO

Density-corrected (DC) density functional theory (DFT) has been proposed to overcome difficulties related to the self-interaction error. The procedure uses the Hartree-Fock electron density (matrix) non-self-consistently in conjunction with an approximate functional. DC-DFT has so far mainly been tested for total energy differences, whereas other types of molecular properties have not been evaluated systematically. This work focuses on the performance of DC-DFT for molecular properties, namely, dipole moments, static polarizabilities, and electric field gradients (EFGs) at atomic nuclei. Accurate reference data were generated from coupled-cluster theory to assess the performance of DC and self-consistent DFT calculations for twelve molecules, including diatomics with transition metals. DC-DFT does no harm in dipole moment calculations, but it negatively impacts the polarizability in at least one case. DC-DFT performs well for EFGs, even for the difficult case of CuCl.

18.
Phys Chem Chem Phys ; 25(12): 8624-8630, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36891907

RESUMO

Experimentally conducted reactions between CO2 and various substrates (i.e., ethylenediamine (EDA), ethanolamine (ETA), ethylene glycol (EG), mercaptoethanol (ME), and ethylene dithiol (EDT)) are considered in a computational study. The reactions were previously conducted under harsh conditions utilizing toxic metal catalysts. We computationally utilize Brønsted acidic ionic liquid (IL) [Et2NH2]HSO4 as a catalyst aiming to investigate and propose 'greener' pathways for future experimental studies. Computations show that EDA is the best to fixate CO2 among the tested substrates: the nucleophilic EDA attack on CO2 is calculated to have a very small energy barrier to overcome (TS1EDA, ΔG‡ = 1.4 kcal mol-1) and form I1EDA (carbamic acid adduct). The formed intermediate is converted to cyclic urea (PEDA, imidazolidin-2-one) via ring closure and dehydration of the concerted transition state (TS2EDA, ΔG‡ = 32.8 kcal mol-1). Solvation model analysis demonstrates that nonpolar solvents (hexane, THF) are better for fixing CO2 with EDA. Attaching electron-donating and -withdrawing groups to EDA does not reduce the energy barriers. Modifying the IL via changing the anion part (HSO4-) central S atom with 6 A and 5 A group elements (Se, P, and As) shows that a Se-based IL can be utilized for the same purpose. Molecular dynamics (MD) simulations reveal that the IL ion pairs can hold substrates and CO2 molecules via noncovalent interactions to ease nucleophilic attack on CO2.

19.
Chemistry ; 29(41): e202300077, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36973189

RESUMO

We report the structural, vibrational, and optical properties of americium formate (Am(CHO2 )3 ) crystals synthesized via the in situ hydrolysis of dimethylformamide (DMF). The coordination polymer features Am3+ ions linked by formate ligands into a three-dimensional network that is isomorphous to several lanthanide analogs, (e. g., Eu3+ , Nd3+ , Tb3+ ). Structure determination revealed a nine-coordinate Am3+ metal center that features a unique local C3v symmetry. The metal-ligand bonding interactions were investigated by vibrational spectroscopy, natural localized molecular orbital calculations, and the quantum theory of atoms in molecules. The results paint a predominantly ionic bond picture and suggest the metal-oxygen bonds increase in strength from Nd-O

20.
Inorg Chem ; 62(12): 4814-4822, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36920249

RESUMO

A novel actinide-containing coordination polymer, [Am(C2O4)(H2O)3Cl] (Am-1), has been synthesized and structurally characterized. The crystallographic analysis reveals that the structure is two-dimensional and comprised of pseudo-dimeric Am3+ nodes that are bridged by oxalate ligands to form sheets. Each metal center is nine-coordinate, forming a distorted capped square antiprism geometry with a C1 symmetry, and features bound oxalate, aqua, and chloro ligands. The Am3+-ligand bonds were probed computationally using the quantum theory of atoms in molecules nd natural localized molecular orbital approaches to investigate the underlying mechanisms and hybrid atomic orbital contributions therein. The analyses indicate that the bonds within Am-1 are predominantly ionic and the 5f shell of the Am3+ metal centers does not add a significant covalent contribution to the bonds. Our bonding assessment is supported by measurements on the optical properties of Am-1 using diffuse reflectance and photoluminescence spectroscopies. The position of the principal absorption band at 507 nm (5L6' ← 7F0') is notable because it is consistent with previously reported americium oxalate complexes in solution, indicating similarities in the electronic structure and ionic bonding. Compound Am-1 is an active phosphor, featuring strong bright-blue oxalate-based luminescence with no evidence of metal-centered emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...