Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 12(8)2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-36010253

RESUMO

Gynecological cancer accounts for an elevated incidence worldwide requiring responsiveness regarding its care. The comprehensive genomic approach agrees with the classification of certain tumor types. We evaluated 49 patients with gynecological tumors undergoing high-throughput sequencing to explore whether identifying alterations in cancer-associated genes could characterize concrete histological subtypes. We performed immune examination and analyzed subsequent clinical impact. We found 220 genomic aberrations mostly distributed as single nucleotide variants (SNV, 77%). Only 3% were classified as variants of strong clinical significance in BRCA1 and BRCA2 of ovarian high-grade serous (HGSC) and uterine endometrioid carcinoma. TP53 and BRCA1 occurred in 72% and 28% of HGSC. Cervical squamous cell carcinoma was entirely HPV-associated and mutations occurred in PIK3CA (60%), as well as in uterine serous carcinoma (80%). Alterations were seen in PTEN (71%) and PIK3CA (60%) of uterine endometrioid carcinoma. Elevated programmed death-ligand 1 (PD-L1) was associated with high TILs. Either PD-L1 augmented in deficient mis-matched repair (MMR) proteins or POLE mutated cases when compared to a proficient MMR state. An 18% received genotype-guided therapy and a 4% immunotherapy. The description of tumor subtypes is plausible through high-throughput sequencing by recognizing clinically relevant alterations. Additional concomitant assessment of immune biomarkers identifies candidates for immunotherapy.

2.
PeerJ ; 8: e10069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083132

RESUMO

BACKGROUND: Next-generation sequencing (NGS) is a high-throughput technology that has become widely integrated in molecular diagnostics laboratories. Among the large diversity of NGS-based panels, the Trusight Tumor 26 (TsT26) enables the detection of low-frequency variants across 26 genes using the MiSeq platform. METHODS: We describe the inter-laboratory validation and subsequent clinical application of the panel in 399 patients presenting a range of tumor types, including gastrointestinal (GI, 29%), hematologic (18%), lung (13%), gynecological and breast (8% each), among others. RESULTS: The panel is highly accurate with a test sensitivity of 92%, and demonstrated high specificity and positive predictive values (95% and 96%, respectively). Sequencing testing was successful in two-thirds of patients, while the remaining third failed due to unsuccessful quality-control filtering. Most detected variants were observed in the TP53 (28%), KRAS (16%), APC (10%) and PIK3CA (8%) genes. Overall, 372 variants were identified, primarily distributed as missense (81%), stop gain (9%) and frameshift (7%) altered sequences and mostly reported as pathogenic (78%) and variants of uncertain significance (19%). Only 14% of patients received targeted treatment based on the variant determined by the panel. The variants most frequently observed in GI and lung tumors were: KRAS c.35G > A (p.G12D), c.35G > T (p.G12V) and c.34G > T (p.G12C). CONCLUSIONS: Prior panel validation allowed its use in the laboratory daily practice by providing several relevant and potentially targetable variants across multiple tumors. However, this study is limited by high sample inadequacy rate, raising doubts as to continuity in the clinical setting.

3.
Mol Vis ; 17: 1103-9, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21552474

RESUMO

PURPOSE: Heterozygous mutations around codon 838 of the guanylate cyclase 2D (GUCY2D) gene have recently been associated with more than a third of autosomal dominant macular dystrophy patients. The aim of our study was to evaluate the prevalence of these mutations in Spanish families with autosomal dominant cone, cone-rod, and macular dystrophies. METHODS: Mutation analysis was performed by PCR amplification of exon 13 of GUCY2D and subsequent restriction analysis. To confirm the results, automatic sequencing analysis was also performed. RESULTS: Among the 22 unrelated Spanish families included in the study, we found two associated disease mutations at codon 838 of the GUCY2D gene, one of which had not been previously described (p.R838P). This novel mutation exhibited phenotypic variability. CONCLUSIONS: The prevalence of mutations around codon 838 of GUCY2D in our group of families (9.09%) is lower than that previously reported in other populations. However, the discovery of a novel mutation at codon 838 further suggests that this locus is a mutation hotspot within the GUCY2D gene, and confirms the importance of analyzing this codon to characterize molecularly these autosomal dominant retinal disorders.


Assuntos
Estudos de Associação Genética , Guanilato Ciclase/genética , Degeneração Macular/genética , Receptores de Superfície Celular/genética , População Branca/genética , Códon , Análise Mutacional de DNA , Genes Dominantes , Guanilato Ciclase/metabolismo , Humanos , Degeneração Macular/epidemiologia , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Receptores de Superfície Celular/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/patologia , Espanha , Acuidade Visual/genética , População Branca/etnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...