Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 5(16): 2045-54, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27245368

RESUMO

The use of stretchable electrodes interfaced with the human body has enabled a new frontier in biomedical engineering, and the miniaturization of such electrodes can allow for a more precise spatial control to monitor or stimulate tissues. The understanding of the response of cells or tissues to combined electromechanical stimulation, as made possible by stretchable electrodes, is essential to improve medical devices and therapies. Cheap to produce and easy to use platforms for in vitro cell studies are thus urgently needed. This study reports the successful implementation of silver nanowires (AgNWs) into an integrated miniaturized electromechanical stimulator, which is compatible with cell culture. The innovative steps include a lithography-based lift-off method to micropattern AgNWs onto an elastic silicone membrane. These stretchable microelectrodes are then integrated into a microfluidic device for cell culture, which enables the synchronous electromechanical stimulation of cells. In a proof-of-concept study, it is furthermore shown that fibroblasts respond uniquely to mechanical stretching, electrical stimulation, and combined electromechanical stimulations in terms of cell alignment and morphology, as well as by producing the extracellular matrix protein collagen. This proof-of-concept study illustrates the functionality and usability of these stretchable AgNWs microelectrodes for either basic research or future biomedical applications.


Assuntos
Dispositivos Lab-On-A-Chip , Nanofios/química , Prata/química , Animais , Adesão Celular , Linhagem Celular , Colágeno/biossíntese , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Humanos , Microeletrodos
2.
Sci Rep ; 6: 18109, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728082

RESUMO

To survive antibiotics, bacteria use two different strategies: counteracting antibiotic effects by expression of resistance genes or evading their effects e.g. by persisting inside host cells. Since bacterial adhesins provide access to the shielded, intracellular niche and the adhesin type 1 fimbriae increases bacterial survival chances inside macrophages, we asked if fimbriae also influenced survival by antibiotic evasion. Combined gentamicin survival assays, flow cytometry, single cell microscopy and kinetic modeling of dose response curves showed that type 1 fimbriae increased the adhesion and internalization by macrophages. This was caused by strongly decreased off-rates and affected the number of intracellular bacteria but not the macrophage viability and morphology. Fimbriae thus promote antibiotic evasion which is particularly relevant in the context of chronic infections.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Fímbrias Bacterianas , Animais , Aderência Bacteriana , Linhagem Celular , Sobrevivência Celular , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica , Lisossomos/imunologia , Lisossomos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/imunologia , Fagocitose , Fenótipo
3.
Biointerphases ; 8(1): 22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24706134

RESUMO

Bacterial adhesion and biofilm growth can cause severe biomaterial-related infections and failure of medical implants. To assess the antifouling properties of engineered coatings, advanced approaches are needed for in situ monitoring of bacterial viability and growth kinetics as the bacteria colonize a surface. Here, we present an optimized protocol for optical real-time quantification of bacterial viability. To stain living bacteria, we replaced the commonly used fluorescent dye SYTO(®) 9 with endogenously expressed eGFP, as SYTO(®) 9 inhibited bacterial growth. With the addition of nontoxic concentrations of propidium iodide (PI) to the culture medium, the fraction of live and dead bacteria could be continuously monitored by fluorescence microscopy as demonstrated here using GFP expressing Escherichia coli as model organism. The viability of bacteria was thereby monitored on untreated and bioactive dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAC)-coated glass substrates over several hours. Pre-adsorption of the antimicrobial surfaces with serum proteins, which mimics typical protein adsorption to biomaterial surfaces upon contact with host body fluids, completely blocked the antimicrobial activity of the DMOAC surfaces as we observed the recovery of bacterial growth. Hence, this optimized eGFP/PI viability assay provides a protocol for unperturbed in situ monitoring of bacterial viability and colonization on engineered biomaterial surfaces with single-bacteria sensitivity under physiologically relevant conditions.


Assuntos
Fluorescência , Aderência Bacteriana/fisiologia , Proteínas de Fluorescência Verde/química , Viabilidade Microbiana , Microscopia de Fluorescência , Propídio/química
4.
Proc Natl Acad Sci U S A ; 109(13): 4916-20, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22421136

RESUMO

Important insights into aging have been generated with the genetically tractable and short-lived budding yeast. However, it is still impossible today to continuously track cells by high-resolution microscopic imaging (e.g., fluorescent imaging) throughout their entire lifespan. Instead, the field still needs to rely on a 50-y-old laborious and time-consuming method to assess the lifespan of yeast cells and to isolate differentially aged cells for microscopic snapshots via manual dissection of daughter cells from the larger mother cell. Here, we are unique in achieving continuous and high-resolution microscopic imaging of the entire replicative lifespan of single yeast cells. Our microfluidic dissection platform features an optically prealigned single focal plane and an integrated array of soft elastomer-based micropads, used together to allow for trapping of mother cells, removal of daughter cells, monitoring gradual changes in aging, and unprecedented microscopic imaging of the whole aging process. Using the platform, we found remarkable age-associated changes in phenotypes (e.g., that cells can show strikingly differential cell and vacuole morphologies at the moment of their deaths), indicating substantial heterogeneity in cell aging and death. We envision the microfluidic dissection platform to become a major tool in aging research.


Assuntos
Microfluídica/métodos , Microscopia de Fluorescência/métodos , Saccharomycetales/citologia , Fenótipo , Fatores de Tempo
5.
PLoS Comput Biol ; 5(12): e1000595, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20011108

RESUMO

Apoptosis is regulated by several signaling pathways which are extensively linked by crosstalks. Boolean or logical modeling has become a promising approach to capture the qualitative behavior of such complex networks. Here we built a large-scale literature-based Boolean model of the central intrinsic and extrinsic apoptosis pathways as well as pathways connected with them. The model responds to several external stimuli such as Fas ligand, TNF-alpha, UV-B irradiation, interleukin-1beta and insulin. Timescales and multi-value node logic were used and turned out to be indispensable to reproduce the behavior of the apoptotic network. The coherence of the model was experimentally validated. Thereby an UV-B dose-effect is shown for the first time in mouse hepatocytes. Analysis of the model revealed a tight regulation emerging from high connectivity and spanning crosstalks and a particular importance of feedback loops. An unexpected feedback from Smac release to RIP could further increase complex II formation. The introduced Boolean model provides a comprehensive and coherent description of the apoptosis network behavior. It gives new insights into the complex interplay of pro- and antiapoptotic factors and can be easily expanded to other signaling pathways.


Assuntos
Apoptose , Animais , Apoptose/efeitos da radiação , Biologia Computacional , Humanos , Camundongos , Modelos Biológicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA