Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; : e202300460, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719468

RESUMO

Skin architecture and its underlying vascular structure could be used to assess the health status of skin. A non-invasive, high resolution and deep imaging modality able to visualize skin subcutaneous layers and vasculature structures could be useful for determining and characterizing skin disease and trauma. In this study, a multispectral high-frequency, linear array-based photoacoustic/ultrasound (PAUS) probe is developed and implemented for the imaging of rat skin in vivo. The study seeks to demonstrate the probe capabilities for visualizing the skin and its underlying structures, and for monitoring changes in skin structure and composition during a 5-day course of a chemical burn. We analayze composition of lipids, water, oxy-hemoglobin, and deoxy-hemoglobin (for determination of oxygen saturation) in the skin tissue. The study successfully demonstrated the high-frequency PAUS imaging probe was able to provide 3D images of the rat skin architecture, underlying vasculature structures, and oxygen saturation, water, lipids and total hemoglobin.

2.
Sci Rep ; 14(1): 8900, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632358

RESUMO

Mohs micrographic surgery (MMS) is considered the gold standard for treating high-risk cutaneous basal cell carcinoma (BCC), but is expensive, time-consuming, and can be unpredictable as to how many stages will be required or how large the final lesion and corresponding surgical defect will be. This study is meant to investigate whether optical coherence tomography (OCT), a highly researched modality in dermatology, can be used preoperatively to map out the borders of BCC, resulting in fewer stages of MMS or a smaller final defect. In this prospective study, 22 patients with BCC undergoing surgical excision were enrolled at a single institution. All patients had previously received a diagnostic biopsy providing confirmation of BCC and had been referred to our center for excision with MMS. Immediately prior to performing MMS, OCT was used to map the borders of the lesion. MMS then proceeded according to standard protocol. OCT images were compared to histopathology for agreement. Histopathologic analysis of 7 of 22 MMS specimens (32%) revealed a total absence of BCC, indicating resolution of BCC after previous diagnostic biopsy. This outcome was correctly predicted by OCT imaging in 6 of 7 cases (86%). Nine tumors (9/22, 41%) had true BCC and required a single MMS stage, which was successfully predicted by pre-operative OCT analysis in 7 of 9 cases (78%). The final six tumors (27%) had true BCC and required two MMS stages for complete excision; preoperative OCT successfully predicted the need for a second stage in five cases (5/6, 83.3%). Overall, OCT diagnosed BCC with 95.5% accuracy (Cohen's kappa, κ = 0.89 (p-value = < 0.01) in the center of the lesion. Following a diagnostic biopsy, OCT can be used to verify the existence or absence of residual basal cell carcinoma. When residual tumor is present that requires excision with MMS, OCT can be used to predict tumor borders, optimize surgery and minimize the need for additional surgical stages.


Assuntos
Carcinoma Basocelular , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/patologia , Cirurgia de Mohs/métodos , Tomografia de Coerência Óptica/métodos , Estudos Prospectivos , Carcinoma Basocelular/patologia , Recidiva Local de Neoplasia/cirurgia
3.
Neurophotonics ; 11(1): 015007, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38344025

RESUMO

Significance: There are many neuroscience questions that can be answered by a high-resolution functional brain imaging system. Such a system would require the capability to visualize vasculature and measure neural activity by imaging the entire brain continually and in rapid succession in order to capture hemodynamic changes. Utilizing optical excitation and acoustic detection, photoacoustic technology enables label-free quantification of changes in endogenous chromophores, such as oxyhemoglobin, deoxyhemoglobin, and total hemoglobin. Aim: Our aim was to develop a sufficiently high-resolution, fast frame-rate, and wide field-of-view (FOV) photoacoustic microscopy (PAM) system for the purpose of imaging vasculature and hemodynamics in a rat brain. Approach: Although the most PA microscopy systems use raster scanning (or less commonly Lissajous scanning), we have developed a simple-to-implement laser scanning optical resolution PAM system with spiral scanning (which we have named "spiral laser scanning photoacoustic microscopy" or sLS-PAM) to acquire an 18 mm diameter image at fast frame rate (more than 1 fps). Such a system is designed to permit continuous rat brain imaging without the introduction of photobleaching artifacts. Conclusion: We demonstrated the functional imaging capability of the sLS-PAM system by imaging cerebral hemodynamics in response to whisker and electrical stimulation and used it for vascular imaging of a modeled brain injury. We believe that we have demonstrated the development of a simple-to-implement PAM system, which could become an affordable functional neuroimaging tool for researchers.

4.
Sci Rep ; 14(1): 2230, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278852

RESUMO

Epidermal thickness (ET) changes are associated with several skin diseases. To measure ET, segmentation of optical coherence tomography (OCT) images is essential; manual segmentation is very time-consuming and requires training and some understanding of how to interpret OCT images. Fast results are important in order to analyze ET over different regions of skin in rapid succession to complete a clinical examination and enable the physician to discuss results with the patient in real time. The well-known CNN-graph search (CNN-GS) methodology delivers highly accurate results, but at a high computational cost. Our objective was to build a computational core, based on CNN-GS, able to accurately segment OCT skin images in real time. We accomplished this by fine-tuning the hyperparameters, testing a range of speed-up algorithms including pruning and quantization, designing a novel pixel-skipping process, and implementing the final product with efficient use of core and threads on a multicore central processing unit (CPU). We name this product CNN-GS-skin. The method identifies two defined boundaries on OCT skin images in order to measure ET. We applied CNN-GS-skin to OCT skin images, taken from various body sites of 63 healthy individuals. Compared with CNN-GS, our described method reduced computation time by 130 [Formula: see text] with minimal reduction in ET determination accuracy (from 96.38 to 94.67%).


Assuntos
Pele , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Pele/diagnóstico por imagem , Epiderme/diagnóstico por imagem , Algoritmos , Software
5.
J Biomed Opt ; 29(Suppl 1): S11518, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223680

RESUMO

Significance: Cutaneous melanoma (CM) has a high morbidity and mortality rate, but it can be cured if the primary lesion is detected and treated at an early stage. Imaging techniques such as photoacoustic (PA) imaging (PAI) have been studied and implemented to aid in the detection and diagnosis of CM. Aim: Provide an overview of different PAI systems and applications for the study of CM, including the determination of tumor depth/thickness, cancer-related angiogenesis, metastases to lymph nodes, circulating tumor cells (CTCs), virtual histology, and studies using exogenous contrast agents. Approach: A systematic review and classification of different PAI configurations was conducted based on their specific applications for melanoma detection. This review encompasses animal and preclinical studies, offering insights into the future potential of PAI in melanoma diagnosis in the clinic. Results: PAI holds great clinical potential as a noninvasive technique for melanoma detection and disease management. PA microscopy has predominantly been used to image and study angiogenesis surrounding tumors and provide information on tumor characteristics. Additionally, PA tomography, with its increased penetration depth, has demonstrated its ability to assess melanoma thickness. Both modalities have shown promise in detecting metastases to lymph nodes and CTCs, and an all-optical implementation has been developed to perform virtual histology analyses. Animal and human studies have successfully shown the capability of PAI to detect, visualize, classify, and stage CM. Conclusions: PAI is a promising technique for assessing the status of the skin without a surgical procedure. The capability of the modality to image microvasculature, visualize tumor boundaries, detect metastases in lymph nodes, perform fast and label-free histology, and identify CTCs could aid in the early diagnosis and classification of CM, including determination of metastatic status. In addition, it could be useful for monitoring treatment efficacy noninvasively.


Assuntos
Melanoma , Técnicas Fotoacústicas , Neoplasias Cutâneas , Animais , Humanos , Melanoma/patologia , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Técnicas Fotoacústicas/métodos , Detecção Precoce de Câncer , Tomografia Computadorizada por Raios X
6.
IEEE Trans Med Imaging ; 43(2): 874-885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847617

RESUMO

The ultimate goal of photoacoustic tomography is to accurately map the absorption coefficient throughout the imaged tissue. Most studies either assume that acoustic properties of biological tissues such as speed of sound (SOS) and acoustic attenuation are homogeneous or fluence is uniform throughout the entire tissue. These assumptions reduce the accuracy of estimations of derived absorption coefficients (DeACs). Our quantitative photoacoustic tomography (qPAT) method estimates DeACs using iteratively refined wavefield reconstruction inversion (IR-WRI) which incorporates the alternating direction method of multipliers to solve the cycle skipping challenge associated with full wave inversion algorithms. Our method compensates for SOS inhomogeneity, fluence decay, and acoustic attenuation. We evaluate the performance of our method on a neonatal head digital phantom.


Assuntos
Processamento de Imagem Assistida por Computador , Técnicas Fotoacústicas , Processamento de Imagem Assistida por Computador/métodos , Tomografia/métodos , Tomografia Computadorizada por Raios X , Imagens de Fantasmas , Simulação por Computador , Técnicas Fotoacústicas/métodos , Algoritmos
7.
J Biophotonics ; 17(3): e202300117, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38010300

RESUMO

Various reconstruction algorithms have been implemented for linear array photoacoustic imaging systems with the goal of accurately reconstructing the strength absorbers within the tissue being imaged. Since the existing algorithms have been introduced by different research groups and the context of performance evaluation was not consistent, it is difficult to make a fair comparison between them. In this study, we systematically compared the performance of 10 published image reconstruction algorithms (DAS, UBP, pDAS, DMAS, MV, EIGMV, SLSC, GSC, TR, and FD) using in-vitro phantom data. Evaluations were conducted based on lateral resolution of the reconstructed images, computational time, target detectability, and noise sensitivity. We anticipate the outcome of this study will assist researchers in selecting appropriate algorithms for their linear array PA imaging applications.


Assuntos
Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Diagnóstico por Imagem , Imagens de Fantasmas , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
8.
Photoacoustics ; 33: 100551, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021296

RESUMO

Understanding the neurobiology of complex behaviors requires measurement of activity in the discrete population of active neurons, neuronal ensembles, which control the behavior. Conventional neuroimaging techniques ineffectively measure neuronal ensemble activity in the brain in vivo because they assess the average regional neuronal activity instead of the specific activity of the neuronal ensemble that mediates the behavior. Our functional molecular photoacoustic tomography (FM-PAT) system allows direct imaging of Fos-dependent neuronal ensemble activation in Fos-LacZ transgenic rats in vivo. We tested four experimental conditions and found increased FM-PAT signal in prefrontal cortical areas in rats undergoing conditioned fear or novel context exposure. A parallel immunofluorescence ex vivo study of Fos expression found similar findings. These findings demonstrate the ability of FM-PAT to measure Fos-expressing neuronal ensembles directly in vivo and support a mechanistic role for the prefrontal cortex in higher-order processing of response to specific stimuli or environmental cues.

9.
Light Sci Appl ; 12(1): 283, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996426

RESUMO

Diabetes progression is marked by damage to vascular and neural networks. Raster-scan optoacoustic mesoscopy holds the potential to measure extent of diabetes progression by analyzing changes in skin vasculature.

10.
Photoacoustics ; 33: 100549, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37664559

RESUMO

Intraventricular (IVH) and periventricular (PVH) hemorrhages in preterm neonates are common because the periventricular blood vessels are still developing up to 36 weeks and are fragile. Currently, transfontanelle ultrasound (US) imaging is utilized for screening for IVH and PVH, largely through the anterior fontanelle. However for mild hemorrhages, inconclusive diagnoses are common, leading to failure to detect IVH/PVH or, when other clinical symptoms are present, use of second stage neuroimaging modalities requiring transport of vulnerable patients. Yet even mild IVH/PVH increases the risk of moderate-severe neurodevelopmental impairment. Here, we demonstrate the capability of transfontanelle photoacoustic imaging (TFPAI) to detect IVH and PVH in-vivo in a large animal model. TFPAI was able to detect IVH/PVH as small as 0.3 mL in volume in the brain (p < 0.05). By contrast, US was able to detect hemorrhages as small as 0.5 mL. These preliminary results suggest TFPAI could be translated into a portable bedside imaging probe for improved diagnosis of clinically relevant brain hemorrhages in neonates.

12.
Photoacoustics ; 32: 100538, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575972

RESUMO

We have developed and optimized an imaging system to study and improve the detection of brain hemorrhage and to quantify oxygenation. Since this system is intended to be used for brain imaging in neonates through the skull opening, i.e., fontanelle, we called it, Transfontanelle Photoacoustic Imaging (TFPAI) system. The system is optimized in terms of optical and acoustic designs, thermal safety, and mechanical stability. The lower limit of quantification of TFPAI to detect the location of hemorrhage and its size is evaluated using in-vitro and ex-vivo experiments. The capability of TFPAI in measuring the tissue oxygenation and detection of vasogenic edema due to brain blood barrier disruption are demonstrated. The results obtained from our experimental evaluations strongly suggest the potential utility of TFPAI, as a portable imaging modality in the neonatal intensive care unit. Confirmation of these findings in-vivo could facilitate the translation of this promising technology to the clinic.

13.
J Biophotonics ; 16(11): e202300103, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37468445

RESUMO

One common method to improve the low signal-to-noise ratio of the photoacoustic (PA) signal generated from weak absorbers or absorbers located in deep tissue is to acquire signal multiple times from the same region and perform averaging. However, pulse-to-pulse laser fluctuations together with differences in the beam profile of the pulses create undeterministic multiple scattering processes in the tissue. This phenomenon consequently induces a spatiotemporal displacement in the PA signal samples which in turn deteriorates the effectiveness of signal averaging. Here, we present an adaptive coherent weighted averaging algorithm to adjust the locations and values of PA signal samples for more efficient signal averaging. The proposed method is evaluated in a linear array-based PA imaging setup of ex vivo sheep brain.


Assuntos
Técnicas Fotoacústicas , Tomografia Computadorizada por Raios X , Animais , Ovinos , Razão Sinal-Ruído , Imagens de Fantasmas , Algoritmos , Encéfalo/diagnóstico por imagem , Técnicas Fotoacústicas/métodos
14.
Skin Res Technol ; 29(6): e13377, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37357662

RESUMO

INTRODUCTION: Phacomatosis pigmentokeratotica (PPK), an epidermal nevus syndrome, is characterized by the coexistence of nevus spilus and nevus sebaceus. Within the nevus spilus, an extensive range of atypical nevi of different morphologies may manifest. Pigmented lesions may fulfill the ABCDE criteria for melanoma, which may prompt a physician to perform a full-thickness biopsy. MOTIVATION: Excisions result in pain, mental distress, and physical disfigurement. For patients with a significant number of nevi with morphologic atypia, it may not be physically feasible to biopsy a large number of lesions. Optical coherence tomography (OCT) is a non-invasive imaging modality that may be used to visualize non-melanoma and melanoma skin cancers. MATERIALS AND METHOD: In this study, we used OCT to image pigmented lesions with morphologic atypia in a patient with PPK and assessed their quantitative optical properties compared to OCT cases of melanoma. We implement a support vector machine learning algorithm with Gabor wavelet transformation algorithm during post-image processing to extract optical properties and calculate attenuation coefficients. RESULTS: The algorithm was trained and tested to extract and classify textural data. CONCLUSION: We conclude that implementing this post-imaging machine learning algorithm to OCT images of pigmented lesions in PPK has been able to successfully confirm benign optical properties. Additionally, we identified remarkable differences in attenuation coefficient values and tissue optical characteristics, further defining separating benign features of pigmented lesions in PPK from malignant features.


Assuntos
Nevo , Neoplasias Cutâneas , Humanos , Tomografia de Coerência Óptica , Máquina de Vetores de Suporte , Neoplasias Cutâneas/patologia , Nevo/diagnóstico por imagem
15.
Theranostics ; 13(10): 3346-3367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351178

RESUMO

Hypoxia causes the expression of signaling molecules which regulate cell division, lead to angiogenesis, and further, in the tumor microenvironment, promote resistance to chemotherapy and radiotherapy, and induce metastasis. Photoacoustic imaging (PAI) takes advantage of unique absorption characteristics of chromophores in tissues and provides the opportunity to construct images with a high degree of spatial and temporal resolution. In this review, we discuss the physiologic characteristics of tumor hypoxia, and current applications of PAI using endogenous (label free imaging) and exogenous (organic and inorganic) contrast agents. Features of various methods in terms of their efficacy for determining physiologic and proteomic phenomena are analyzed. This review demonstrates that PAI has the potential to understand tumor growth and metastasis development through measurement of regulatory molecule concentrations, oxygen gradients, and vascular distribution.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Humanos , Técnicas Fotoacústicas/métodos , Proteômica , Hipóxia Tumoral , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Microambiente Tumoral
16.
Skin Res Technol ; 29(4): e13279, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37113090

RESUMO

BACKGROUND: Phacomatosis pigmentokeratotica (PPK) is a distinct and rare type of epidermal nevus syndrome characterized by coexisting nonepidermolytic organoid sebaceous nevus (SN) with one or more speckled lentiginous nevi (SLN). Atypical nevi including compound Spitz and compound dysplastic may manifest within regions of SLN. Patients with PPK, or similar atypical nevus syndromes, may be subject to a significant lifetime number of biopsies, leading to pain, scarring, anxiety, financial burden, and decreased quality of life. The current literature includes case reports, genetics, and associated extracutaneous symptoms of PPK, but use of noninvasive imaging techniques have not been explored. We aim to investigate the value of high-frequency ultrasound (HFUS) and optical coherence tomography (OCT) in discriminating morphological features of pigmented lesions and nevus sebaceous within one patient with PPK. MATERIALS AND METHODS: Two modalities, (1) HFUS imaging, based on acoustic properties and (2) OCT imaging, based on optical properties, were used to image a patient with PPK. Benign pigmented lesions, which may raise clinical suspicion for significant atypia, and nevus sebaceous, were selected on different areas of the body to be studied. RESULTS: Five pigmented lesions and one area of nevus sebaceous were imaged and analyzed for noninvasive features. Distinct patterns of hypoechoic features were seen on HFUS and OCT. CONCLUSION: HFUS provides a deep view of the tissue, with ability to differentiate gross structures beneath the skin. OCT provides a smaller penetration depth and a higher resolution. We have described noninvasive features of atypical nevi and nevus sebaceous on HFUS and OCT, which indicate benign etiology.


Assuntos
Nevo , Neoplasias Cutâneas , Humanos , Tomografia de Coerência Óptica , Qualidade de Vida , Neoplasias Cutâneas/diagnóstico por imagem , Biópsia
17.
J Biophotonics ; 16(7): e202200313, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37052299

RESUMO

Brain hemorrhage, specifically intraventricular hemorrhage (IVH), is considered one of the primary and leading causes of cerebral anomalies in neonates. Several imaging modalities including the most popular, cranial ultrasound, are not capable of detecting early stage IVHs. Photoacoustic imaging (PAI) exhibited great potential for detecting cerebral hemorrhage in studies limited to small animal models, but these models are not comparable to neonatal brain morphology. However, hemorrhage detection in large animal models using PAI is rare due to the complexity and cost of inducing hemorrhage in vivo. Moreover, in vitro studies are unable to represent the physiology and environment of the hemorrhagic lesion. Here, we proposed a pseudo hemorrhage implementation method in the sheep brain that allows us to mimic different hemorrhagic lesions ex vivo without compromising the complexity of cerebral imaging. This approach enables a true evaluation of PAI performance for detecting hemorrhages and can be utilized as a reference to optimize the PAI system for in vivo imaging.


Assuntos
Encéfalo , Hemorragia Cerebral , Imagens de Fantasmas , Técnicas Fotoacústicas , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/patologia , Técnicas Fotoacústicas/métodos , Humanos , Recém-Nascido , Animais , Ovinos , Modelos Animais de Doenças
19.
J Biophotonics ; 16(7): e202200383, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36998211

RESUMO

Photoacoustic microscopy (PAM) is a high-resolution imaging modality that has been mainly implemented with small field of view applications. Here, we developed a fast PAM system that utilizes a unique spiral laser scanning mechanism and a wide acoustic detection unit. The developed system can image an area of 12.5 cm2 in 6.4 s. The system has been characterized using highly detailed phantoms. Finally, the imaging capabilities of the system were further demonstrated by imaging a sheep brain ex vivo and a rat brain in vivo.


Assuntos
Microscopia , Técnicas Fotoacústicas , Ratos , Animais , Ovinos , Microscopia/métodos , Lasers , Luz , Análise Espectral , Imagens de Fantasmas , Técnicas Fotoacústicas/métodos
20.
J Biophotonics ; 16(7): e202200316, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36995028

RESUMO

The onset of intracerebral hemorrhage and its progression toward acute brain injury have been correlated with the concentration of unconjugated bilirubin (BR). In addition, BR has been considered a novel predictor of outcome from intracranial hemorrhage. Since the existing invasive approach for determining localized BR and biliverdin (BV) concentration within the hemorrhagic brain lesion is not feasible, the predictive capability of BR in terms of determining the onset of hemorrhage and understanding the consequences of its progression (age) is unknown. In this study, we have demonstrated a photoacoustic (PA) approach to the noninvasive measurement of BR-BV ratio that can be utilized longitudinally to approximate the onset of the hemorrhage. The PA imaging-based measurements of BV and BR in tissues and fluids can potentially be used to determine hemorrhage "age," quantitatively evaluate the hemorrhage resorption or detect a rebleeding, and assess responses to therapy and prognosis.


Assuntos
Bilirrubina , Biliverdina , Humanos , Biliverdina/química , Bilirrubina/química , Análise Espectral , Hemorragia/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...