Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 362(6421): 1391-1395, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30442767

RESUMO

Magnetic reconnection is an energy conversion process that occurs in many astrophysical contexts including Earth's magnetosphere, where the process can be investigated in situ by spacecraft. On 11 July 2017, the four Magnetospheric Multiscale spacecraft encountered a reconnection site in Earth's magnetotail, where reconnection involves symmetric inflow conditions. The electron-scale plasma measurements revealed (i) super-Alfvénic electron jets reaching 15,000 kilometers per second; (ii) electron meandering motion and acceleration by the electric field, producing multiple crescent-shaped structures in the velocity distributions; and (iii) the spatial dimensions of the electron diffusion region with an aspect ratio of 0.1 to 0.2, consistent with fast reconnection. The well-structured multiple layers of electron populations indicate that the dominant electron dynamics are mostly laminar, despite the presence of turbulence near the reconnection site.

2.
Geophys Res Lett ; 45(2): 578-584, 2018 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-29576666

RESUMO

We report Magnetospheric Multiscale observations of electron pressure gradient electric fields near a magnetic reconnection diffusion region using a new technique for extracting 7.5 ms electron moments from the Fast Plasma Investigation. We find that the deviation of the perpendicular electron bulk velocity from E × B drift in the interval where the out-of-plane current density is increasing can be explained by the diamagnetic drift. In the interval where the out-of-plane current is transitioning to in-plane current, the electron momentum equation is not satisfied at 7.5 ms resolution.

3.
Phys Rev Lett ; 120(5): 055101, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481157

RESUMO

Fully kinetic simulations of asymmetric magnetic reconnection reveal the presence of magnetic-field-aligned beams of electrons flowing toward the topological magnetic x line. Within the ∼6d_{e} electron-diffusion region, the beams become oblique to the local magnetic field, providing a unique signature of the electron-diffusion region where the electron frozen-in law is broken. The numerical predictions are confirmed by in situ Magnetospheric Multiscale spacecraft observations during asymmetric reconnection at Earth's dayside magnetopause.

4.
J Geophys Res Space Phys ; 122(11): 10891-10909, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29399431

RESUMO

During a magnetic storm on 23 June 2015, several very intense substorms took place, with signatures observed by multiple spacecraft including DMSP and Magnetospheric Multiscale (MMS). At the time of interest, DMSP F18 crossed inbound through a poleward expanding auroral bulge boundary at 23.5 h magnetic local time (MLT), while MMS was located duskward of 22 h MLT during an inward crossing of the expanding plasma sheet boundary. The two spacecraft observed a consistent set of signatures as they simultaneously crossed the reconnection separatrix layer during this very intense reconnection event. These include (1) energy dispersion of the energetic ions and electrons traveling earthward, accompanied with high electron energies in the vicinity of the separatrix; (2) energy dispersion of polar rain electrons, with a high-energy cutoff; and (3) intense inward convection of the magnetic field lines at the MMS location. The high temporal resolution measurements by MMS provide unprecedented observations of the outermost electron boundary layer. We discuss the relevance of the energy dispersion of the electrons, and their pitch angle distribution, to the spatial and temporal evolution of the boundary layer. The results indicate that the underlying magnetotail magnetic reconnection process was an intrinsically impulsive and the active X-line was located relatively close to the Earth, approximately at 16-18 RE.

5.
Phys Rev Lett ; 117(18): 185101, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835028

RESUMO

Supported by a kinetic simulation, we derive an exclusion energy parameter E_{X} providing a lower kinetic energy bound for an electron to cross from one inflow region to the other during magnetic reconnection. As by a Maxwell demon, only high-energy electrons are permitted to cross the inner reconnection region, setting the electron distribution function observed along the low-density side separatrix during asymmetric reconnection. The analytic model accounts for the two distinct flavors of crescent-shaped electron distributions observed by spacecraft in a thin boundary layer along the low-density separatrix.

6.
Geophys Res Lett ; 43(10): 4841-4849, 2016 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-27867235

RESUMO

We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

7.
Phys Rev Lett ; 117(16): 165101, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27792387

RESUMO

Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earth's quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMS's high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples.

8.
Geophys Res Lett ; 43(10): 4716-4724, 2016 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-27635105

RESUMO

New Magnetospheric Multiscale (MMS) observations of small-scale (~7 ion inertial length radius) flux transfer events (FTEs) at the dayside magnetopause are reported. The 10 km MMS tetrahedron size enables their structure and properties to be calculated using a variety of multispacecraft techniques, allowing them to be identified as flux ropes, whose flux content is small (~22 kWb). The current density, calculated using plasma and magnetic field measurements independently, is found to be filamentary. Intercomparison of the plasma moments with electric and magnetic field measurements reveals structured non-frozen-in ion behavior. The data are further compared with a particle-in-cell simulation. It is concluded that these small-scale flux ropes, which are not seen to be growing, represent a distinct class of FTE which is generated on the magnetopause by secondary reconnection.

9.
Science ; 352(6290): aaf2939, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27174677

RESUMO

Magnetic reconnection is a fundamental physical process in plasmas whereby stored magnetic energy is converted into heat and kinetic energy of charged particles. Reconnection occurs in many astrophysical plasma environments and in laboratory plasmas. Using measurements with very high time resolution, NASA's Magnetospheric Multiscale (MMS) mission has found direct evidence for electron demagnetization and acceleration at sites along the sunward boundary of Earth's magnetosphere where the interplanetary magnetic field reconnects with the terrestrial magnetic field. We have (i) observed the conversion of magnetic energy to particle energy; (ii) measured the electric field and current, which together cause the dissipation of magnetic energy; and (iii) identified the electron population that carries the current as a result of demagnetization and acceleration within the reconnection diffusion/dissipation region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...