Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34834056

RESUMO

Ferritin, a spherically shaped protein complex, is responsible for iron storage in bacteria, plants, animals, and humans. Various ferritin iron core compositions in organisms are associated with specific living requirements, health state, and different biochemical roles of ferritin isomers. Magnetoferritin, a synthetic ferritin derivative, serves as an artificial model system of unusual iron phase structures found in humans. We present the results of a complex structural study of magnetoferritins prepared by controlled in vitro synthesis. Using various complementary methods, it was observed that manipulation of the synthesis technology can improve the physicochemical parameters of the system, which is useful in applications. Thus, a higher synthesis temperature leads to an increase in magnetization due to the formation of the magnetite phase. An increase in the iron loading factor has a more pronounced impact on the protein shell structure in comparison with the pH of the aqueous medium. On the other hand, a higher loading factor at physiological temperature enhances the formation of an amorphous phase instead of magnetite crystallization. It was confirmed that the iron-overloading effect alone (observed during pathological events) cannot contribute to the formation of magnetite.

2.
ACS Appl Mater Interfaces ; 13(20): 23627-23637, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988970

RESUMO

At present, both native and immobilized nanoparticles are of great importance in many areas of science and technology. In this paper, we have studied magnetic iron oxide nanoparticles and their aggregates bound on woven cotton textiles employing two simple modification procedures. One modification was based on the treatment of textiles with perchloric-acid-stabilized magnetic fluid diluted with methanol followed by drying. The second procedure was based on the microwave-assisted conversion of ferrous sulfate at high pH followed by drying. The structure and functional properties of these modified textiles were analyzed in detail. Scanning electron microscopy of native and modified textiles clearly showed the presence of iron oxide nanoparticles on the surface of the modified cotton fibers. All of the modified textile materials exhibited light to dark brown color depending on the amount of the bound iron oxide particles. Magnetic measurements showed that the saturation magnetization values reflect the amount of magnetic nanoparticles present in the modified textiles. Small-angle X-ray and neutron scattering measurements were conducted for the detailed structural characterization at the nanoscale of both the native and magnetically modified textiles, and different structural organization of nanoparticles in the two kinds of textile samples were concluded. The textile-bound iron oxide particles exhibited peroxidase-like activity when the N,N-diethyl-p-phenylenediamine sulfate salt was used as a substrate; this nanozyme activity enabled rapid decolorization of crystal violet in the presence of hydrogen peroxide. The deposition of a sufficient amount of iron oxide particles on textiles enabled their simple magnetic separation from large volumes of solutions; if necessary, the magnetic response of the modified textiles can be simply increased by incorporation of a piece of magnetic iron wire. The simplicity of the immobilized nanozyme preparation and the low cost of all the precursors enable its widespread application, such as decolorization and degradation of selected organic dyes and other important pollutants. Other types of textile-bound nanozymes can be prepared and used as low-cost catalysts for a variety of applications.


Assuntos
Fibra de Algodão , Nanopartículas de Magnetita/química , Nanocompostos/química , Peroxidases , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Peroxidases/química , Peroxidases/metabolismo
3.
ACS Appl Mater Interfaces ; 12(29): 32410-32419, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32598133

RESUMO

Nowadays, determining the disassembly mechanism of amyloids under nanomaterials action is a crucial issue for their successful future use in therapy of neurodegenerative and overall amyloid-related diseases. In this study, the antiamyloid disassembly activity of fullerenes C60 and C70 dispersed in 1-methyl-2-pyrrolidinone (NMP) toward amyloid fibrils preformed from lysozyme and insulin was investigated using a combination of different experimental techniques. Thioflavin T fluorescence assay and atomic force microscopy were applied for monitoring of disaggregation activity of fullerenes. It was demonstrated that both types of fullerene-based complexes are very effective in disassembling preformed fibrils, and characterized by the low apparent half-maximal disaggregation concentration (DC50) in the range of ∼22-30 µg mL-1. Small-angle neutron scattering was employed to monitor the different stages of the disassembly process with respect to the size and morphology of the aggregates. Based on the obtained results, a possible disassembly mechanism for amyloid fibrils interacting with fullerene/NMP complexes was proposed. The study is a principal step in understanding of the fullerenes destruction mechanism of the protein amyloids, as well as providing valuable information on how macromolecules can be engineered to disassemble unwanted amyloid aggregates by different mechanisms.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Fulerenos/farmacologia , Nanoestruturas/química , Peptídeos beta-Amiloides/metabolismo , Animais , Galinhas , Fulerenos/química , Humanos , Tamanho da Partícula , Agregados Proteicos/efeitos dos fármacos , Propriedades de Superfície
4.
Nanoscale ; 11(14): 6838-6845, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30912561

RESUMO

Many obstacles impede the development of Li-air batteries for practical applications. In particular, there is lack of understanding of the dynamics of processes occurring in porous air electrodes during discharge, including oxygen transport limitations, pore clogging and electrode passivation by both insulating discharge and parasitic reaction products. Here, using small-angle neutron scattering, which provides information on the whole electrode adequate to electrochemical data, we uncover the mechanisms limiting the Li-O2 porous carbon electrode capacity by analysis of the cathode pore filling in highly and poorly solvating media - dimethyl sulfoxide and acetonitrile. The results obtained allowed us suppose that in both cases the cell death is mainly triggered by blocking of oxygen transport pathways inside carbon black particle agglomerates. Total discharge capacities are, indeed, higher in highly solvating solutions due to a higher discharge intermediate lifetime and longer diffusion distance, which enable Li2O2 formation outside the carbon black agglomerates, which are, as we demonstrated, in fact mesocrystals that are confirmed by the appearance of a diffraction peak in scattering curves.

5.
Colloids Surf B Biointerfaces ; 146: 794-800, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27451367

RESUMO

An adsorption of magnetic nanoparticles (MNP) from electrostatically stabilized aqueous ferrofluids on amyloid fibrils of hen egg white lysozyme (HEWL) in 2mg/mL acidic dispersions have been detected for the MNP concentration range of 0.01-0.1vol.%. The association of the MNP with amyloid fibrils has been characterized by transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS) and magneto-optical measurements. It has been observed that the extent of adsorption is determined by the MNP concentration. When increasing the MNP concentration the formed aggregates of magnetic particles repeat the general rod-like structure of the fibrils. The effect is not observed when MNP are mixed with the solution of lysozyme monomers. The adsorption has been investigated with the aim to clarify previously found disaggregation activity of MNP in amyloid fibrils dispersions and to get deeper insight into interaction processes between amyloids and MNP. The observed effect is also discussed with respect to potential applications for ordering lysozyme amyloid fibrils in a liquid crystal phase under external magnetic fields.


Assuntos
Amiloide/química , Nanopartículas de Magnetita/química , Muramidase/química , Adsorção , Amiloide/metabolismo , Animais , Galinhas , Feminino , Microscopia Eletrônica de Transmissão , Muramidase/metabolismo , Conformação Proteica , Espalhamento a Baixo Ângulo , Eletricidade Estática , Difração de Raios X
6.
J Phys Condens Matter ; 25(44): 445001, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24055978

RESUMO

A spatial transition of the carbon state in detonation nanodiamond (DND) from crystalline diamond inside the particle to a graphite-like state at the DND surface is proposed on the basis of small-angle neutron scattering (SANS) analysis. The SANS contrast variation from concentrated (5 wt%) dispersions of DND in liquids (water, dimethylsulfoxide) reveals a shift in the mean scattering length density of DND as compared to pure diamond, which is related to the presence of a non-diamond component in the DND structure. At the same time, the diffusive character of the particle surface is deduced based on the deviation from the Porod law. The two observations are combined to conclude that the continuous radial density profile over the whole particle volume conforms to a simple power law. The profile naturally suggests that non-diamond states are concentrated mainly close to the particle surface; still there is no sharp boundary between the radial distributions of the two states of carbon in DND.

7.
Langmuir ; 26(11): 8503-9, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20131866

RESUMO

Water-based ferrofluids (magnetic fluids) with double-layer steric stabilization by short monocarboxylic acids (lauric and myristic acids) are considered to be a potential source of magnetic nanoparticles in brain cancer (glioblastoma) treatment. Structure characterization in the absence of an external magnetic field is performed, including transmission electron microscopy, magnetization analysis, and small-angle neutron scattering with contrast variation. It is shown that despite the good stability of the systems a significant part of the magnetite nanoparticles are in aggregates, whose inner structure depends on the stabilizer used. In particular, an incomplete coating of magnetite particles is concluded in the case of myristic acid stabilization. The ferrofluids keep their structure unchanged when added to the cancer cell medium. The intracellular accumulations of magnetite from the ferrofluids added to cancer cell cultures as well as its cytotoxicity with respect to human brain cells are investigated.


Assuntos
Ácidos Carboxílicos/química , Técnicas In Vitro , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...