Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 1): 130540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430998

RESUMO

Polypyrimidine sequences can be targeted by antiparallel clamps forming triplex structures either for biosensing or therapeutic purposes. Despite its successful implementation, their biophysical properties remain to be elusive. In this work, PAGE, circular dichroism and multivariate analysis were used to evaluate the properties of PPRHs directed to SARS-CoV-2 genome. Several PPRHs designed to target various polypyrimidine sites within the viral genome were synthesized. These PPRHs displayed varying binding affinities, influenced by factors such as the length of the PPRH and its GC content. The number and position of pyrimidine interruptions relative to the 4 T loop of the PPRH was found a critical factor, affecting the binding affinity with the corresponding target. Moreover, these factors also showed to affect in the intramolecular and intermolecular equilibria of PPRHs alone and when hybridized to their corresponding targets, highlighting the polymorphic nature of these systems. Finally, the functionality of the PPRHs was evaluated in a thermal lateral flow sensing device showing a good correspondence between their biophysical properties and detection limits. These comprehensive studies contribute to the understanding of the critical factors involved in the design of PPRHs for effective targeting of biologically relevant genomes through the formation of triplex structures under neutral conditions.

2.
Nanomedicine ; 55: 102722, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007069

RESUMO

DNA nanostructures have captured great interest as drug delivery vehicles for cancer therapy. Despite rapid progress in the field, some hurdles, such as low cellular uptake, low tissue specificity or ambiguous drug loading, remain unsolved. Herein, well-known antitumor drugs (doxorubicin, auristatin, and floxuridine) were site-specifically incorporated into DNA nanostructures, demonstrating the potential advantages of covalently linking drug molecules via structural staples instead of incorporating the drugs by noncovalent binding interactions. The covalent strategy avoids critical issues such as an unknown number of drug-DNA binding events and premature drug release. Moreover, covalently modified origami offers the possibility of precisely incorporating several synergetic antitumor drugs into the DNA nanostructure at a predefined molar ratio and to control the exact spatial orientation of drugs into DNA origami. Additionally, DNA-based nanoscaffolds have been reported to have a low intracellular uptake. Thus, two cellular uptake enhancing mechanisms were studied: the introduction of folate units covalently linked to DNA origami and the transfection of DNA origami with Lipofectamine. Importantly, both methods increased the internalization of DNA origami into HTB38 and HCC2998 colorectal cancer cells and produced greater cytotoxic activity when the DNA origami incorporated antiproliferative drugs. The results here present a successful and conceptually distinct approach for the development of DNA-based nanostructures as drug delivery vehicles, which can be considered an important step towards the development of highly precise nanomedicines.


Assuntos
Antineoplásicos , Nanoestruturas , Neoplasias , Antineoplásicos/farmacologia , DNA/química , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanoestruturas/química , Conformação de Ácido Nucleico , Nanotecnologia
3.
Small ; : e2308857, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072781

RESUMO

Graphene solution-gated field-effect transistors (gSGFETs) offer high potential for chemical and biochemical sensing applications. Among the current trends to improve this technology, the functionalization processes are gaining relevance for its crucial impact on biosensing performance. Previous efforts are focused on simplifying the attachment procedure from standard multi-step to single-step strategies, but they still suffer from overreaction, and impurity issues and are limited to a particular ligand. Herein, a novel strategy for single-step immobilization of chemically modified aptamers with fluorenylmethyl and acridine moieties, based on a straightforward synthetic route to overcome the aforementioned limitations is presented. This approach is benchmarked versus a standard multi-step strategy using thrombin as detection model. In order to assess the reliability of the functionalization strategies 48-gSGFETs arrays are employed to acquire large datasets with multiple replicas. Graphene surface characterization demonstrates robust and higher efficiency in the chemical coupling of the aptamers with the single-step strategy, while the electrical response evaluation validates the sensing capability, allowing to implement different alternatives for data analysis and reduce the sensing variability. In this work, a new tool capable of overcome the functionalization challenges of graphene surfaces is provided, paving the way toward the standardization of gSGFETs for biosensing purposes.

4.
Int J Biol Macromol ; 242(Pt 2): 124794, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182626

RESUMO

Cytosine-rich DNA sequences may fold into a structure known as i-motif, with potential in vivo modulation of gene expression. The stability of the i-motif is residual at neutral pH values. To increase it, the addition of neighboring moieties, such as Watson-Crick stabilized loops, tetrads, or non-canonical base pairs have been proposed. Taking a recently described i-motif structure as a model, the relative effect of these structural moieties, as well as several DNA ligands, on the stabilization of the i-motif has been studied. To this end, not only the original sequence but different mutants were considered. Spectroscopic techniques, PAGE, and multivariate data analysis methods have been used to model the folding/unfolding equilibria induced by changes of pH, temperature, and the presence of ligands. The results have shown that the duplex is the moiety that is responsible of the stabilization of the i-motif structure at neutral pH. The T:T base pair, on the contrary, shows little stabilization of the i-motif. From several selected DNA-binding ligands, the G-quadruplex ligand BA41 is shown to interact with the duplex moiety, whereas non-specific interaction and little stabilization has been observed within the i-motif.


Assuntos
DNA , Quadruplex G , Ligantes , DNA/química , Pareamento de Bases , Concentração de Íons de Hidrogênio , Conformação de Ácido Nucleico
5.
Pharmaceutics ; 15(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242702

RESUMO

MicroRNAs (miRNAs) are endogenous, short RNA oligonucleotides that regulate the expression of hundreds of proteins to control cells' function in physiological and pathological conditions. miRNA therapeutics are highly specific, reducing the toxicity associated with off-target effects, and require low doses to achieve therapeutic effects. Despite their potential, applying miRNA-based therapies is limited by difficulties in delivery due to their poor stability, fast clearance, poor efficiency, and off-target effects. To overcome these challenges, polymeric vehicles have attracted a lot of attention due to their ease of production with low costs, large payload, safety profiles, and minimal induction of the immune response. Poly(N-ethyl pyrrolidine methacrylamide) (EPA) copolymers have shown optimal DNA transfection efficiencies in fibroblasts. The present study aims to evaluate the potential of EPA polymers as miRNA carriers for neural cell lines and primary neuron cultures when they are copolymerized with different compounds. To achieve this aim, we synthesized and characterized different copolymers and evaluated their miRNA condensation ability, size, charge, cytotoxicity, cell binding and internalization ability, and endosomal escape capacity. Finally, we evaluated their miRNA transfection capability and efficacy in Neuro-2a cells and rat primary hippocampal neurons. The results indicate that EPA and its copolymers, incorporating ß-cyclodextrins with or without polyethylene glycol acrylate derivatives, can be promising vehicles for miRNA administration to neural cells when all experiments on Neuro-2a cells and primary hippocampal neurons are considered together.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122752, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37084680

RESUMO

In this work, the use of DNA-stabilized fluorescent silver nanoclusters for the detection of target pyrimidine-rich DNA sequences by formation of parallel and antiparallel triplex structures is studied by molecular fluorescence spectroscopy. In the case of parallel triplexes, the probe DNA fragments are Watson-Crick stabilized hairpins, and whereas in the case of antiparallel triplexes, the probe fragments are reverse-Hoogsteen clamps. In all cases, the formation of the triplex structures has been assessed by means of polyacrylamide gel electrophoresis, circular dichroism, and molecular fluorescence spectroscopies, as well as multivariate data analysis methods. The results have shown that it is possible the detection of pyrimidine-rich sequences with an acceptable selectivity by using the approach based on the formation of antiparallel triplex structures.


Assuntos
DNA , Prata , Sequência de Bases , DNA/genética , DNA/química , Pirimidinas , Corantes , Conformação de Ácido Nucleico , Dicroísmo Circular
7.
Pharmaceutics ; 15(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36839642

RESUMO

Antisense and small interfering RNA (siRNA) oligonucleotides have been recognized as powerful therapeutic compounds for targeting mRNAs and inducing their degradation. However, a major obstacle is that unmodified oligonucleotides are not readily taken up into tissues and are susceptible to degradation by nucleases. For these reasons, the design and preparation of modified DNA/RNA derivatives with better stability and an ability to be produced at large scale with enhanced uptake properties is of vital importance to improve current limitations. In the present study, we review the conjugation of oligonucleotides with lipids and peptides in order to produce oligonucleotide conjugates for therapeutics aiming to develop novel compounds with favorable pharmacokinetics.

8.
Curr Med Chem ; 30(11): 1304-1319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34844535

RESUMO

BACKGROUND: Nucleoside and nucleobase antimetabolites are an important class of chemotherapeutic agents for the treatment of cancer as well as other diseases. INTRODUCTION: In order to avoid undesirable side effects, several prodrug strategies have been developed. In the present review, we describe a relatively unknown strategy that consists of using oligonucleotides modified with nucleoside antimetabolites as prodrugs. METHODS: The active nucleotides are generated by enzymatic degradation once incorporated into cells. This strategy has attracted large interest and is widely utilized at present due to the continuous developments made in therapeutic oligonucleotides and the recent advances in nanomaterials and nanomedicine. RESULTS: A large research effort was made mainly in the improvement of the antiproliferative properties of nucleoside homopolymers, but recently, chemically modified aptamers, antisense oligonucleotides and/or siRNA carrying antiproliferative nucleotides have demonstrated a great potential due to the synergetic effect of both therapeutic entities. In addition, DNA nanostructures with interesting properties have been built to combine antimetabolites and enhancers of cellular uptake in the same scaffold. Finally, protein nanoparticles functionalized with receptor-binders and antiproliferative oligomers represent a new avenue for a more effective treatment in cancer therapy. CONCLUSION: It is expected that oligonucleotides carrying nucleoside antimetabolites will be considered as potential drugs in the near future for biomedical applications.


Assuntos
Nucleosídeos , Pró-Fármacos , Humanos , Nucleosídeos/química , Antimetabólitos , Pró-Fármacos/química , Oligonucleotídeos , Nucleotídeos
10.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499587

RESUMO

SARS-CoV-2, a positive-strand RNA virus has caused devastating effects. The standard method for COVID diagnosis is based on polymerase chain reaction (PCR). The method needs expensive reagents and equipment and well-trained personnel and takes a few hours to be completed. The search for faster solutions has led to the development of immunological assays based on antibodies that recognize the viral proteins that are faster and do not require any special equipment. Here, we explore an innovative analytical approach based on the sandwich oligonucleotide hybridization which can be adapted to several biosensing devices including thermal lateral flow and electrochemical devices, as well as fluorescent microarrays. Polypurine reverse-Hoogsteen hairpins (PPRHs) oligonucleotides that form high-affinity triplexes with the polypyrimidine target sequences are used for the efficient capture of the viral genome. Then, a second labeled oligonucleotide is used to detect the formation of a trimolecular complex in a similar way to antigen tests. The reached limit of detection is around 0.01 nM (a few femtomoles) without the use of any amplification steps. The triplex enhanced nucleic acid detection assay (TENADA) can be readily adapted for the detection of any pathogen requiring only the knowledge of the pathogen genome sequence.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Oligonucleotídeos/química , Reação em Cadeia da Polimerase , RNA Viral/genética , RNA Viral/análise , Técnicas de Amplificação de Ácido Nucleico/métodos
11.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897968

RESUMO

The enzyme PARP1 is an attractive target for cancer therapy, as it is involved in DNA repair processes. Several PARP1 inhibitors have been approved for clinical treatments. However, the rapid outbreak of resistance is seriously threatening the efficacy of these compounds, and alternative strategies are required to selectively regulate PARP1 activity. A noncanonical G-quadruplex-forming sequence within the PARP1 promoter was recently identified. In this study, we explore the interaction of known G-quadruplex binders with the G-quadruplex structure found in the PARP gene promoter region. The results obtained by NMR, CD, and fluorescence titration, also confirmed by molecular modeling studies, demonstrate a variety of different binding modes with small stabilization of the G-quadruplex sequence located at the PARP1 promoter. Surprisingly, only pyridostatin produces a strong stabilization of the G-quadruplex-forming sequence. This evidence makes the identification of a proper (3+1) stabilizing ligand a challenging goal for further investigation.


Assuntos
Quadruplex G , Dicroísmo Circular , Reparo do DNA , Ligantes , Regiões Promotoras Genéticas
12.
Chem Rec ; 22(4): e202100270, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35388960

RESUMO

The last decade has witnessed the blooming of nucleic acids for therapeutic and diagnostic applications. In the present article, we describe the most important results from our group in this area covering the international context that surrounded this research. These include the study of modifications at the terminal and internal positions of siRNA duplexes to enhance nuclease resistance, increase loading of the antisense strand to RISC and avoid side effects such as activation of immune response and sense strand misloading. Then, we describe the design of novel lipid, carbohydrate and peptide conjugates to enhance cellular uptake. Finally, we describe the use of nanostructures for drug delivery and for the controlled deposition of matter on surfaces. We invite the readers to submerge into a highly interdisciplinary discipline that combines organic chemistry, biochemical assays, pharmacology issues as well as materials chemistry and structural studies in order to increase the applications of nucleic acids.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Sistemas de Liberação de Medicamentos , RNA Interferente Pequeno/química
13.
Biomaterials ; 280: 121258, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34847435

RESUMO

Current therapy in acute myeloid leukemia (AML) is based on chemotherapeutic drugs administered at high doses, lacking targeting selectivity and displaying poor therapeutic index because of severe adverse effects. Here, we develop a novel nanoconjugate that combines a self-assembled, multivalent protein nanoparticle, targeting the CXCR4 receptor, with an Oligo-Ara-C prodrug, a pentameric form of Ara-C, to highly increase the delivered payload to target cells. This 13.4 nm T22-GFP-H6-Ara-C nanoconjugate selectively eliminates CXCR4+ AML cells, which are protected by its anchoring to the bone marrow (BM) niche, being involved in AML progression and chemotherapy resistance. This nanoconjugate shows CXCR4-dependent internalization and antineoplastic activity in CXCR4+ AML cells in vitro. Moreover, repeated T22-GFP-H6-Ara-C administration selectively eliminates CXCR4+ leukemic cells in BM, spleen and liver. The leukemic dissemination blockage induced by T22-GFP-H6-Ara-C is significantly more potent than buffer or Oligo-Ara-C-treated mice, showing no associated on-target or off-target toxicity and, therefore, reaching a highly therapeutic window. In conclusion, T22-GFP-H6-Ara-C exploits its 11 ligands-multivalency to enhance target selectivity, while the Oligo-Ara-C prodrug multimeric form increases 5-fold its payload. This feature combination offers an alternative nanomedicine with higher activity and greater tolerability than current intensive or non-intensive chemotherapy for AML patients.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Pró-Fármacos , Animais , Antineoplásicos/farmacologia , Citarabina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Nanoconjugados/uso terapêutico , Pró-Fármacos/uso terapêutico
14.
Int J Mol Sci ; 22(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34445442

RESUMO

DNA repair inhibitors are one of the latest additions to cancer chemotherapy. In general, chemotherapy produces DNA damage but tumoral cells may become resistant if enzymes involved in DNA repair are overexpressed and are able to reverse DNA damage. One of the most successful drugs based on modulating DNA repair are the poly(ADP-ribose) polymerase 1 (PARP1) inhibitors. Several PARP1 inhibitors have been recently developed and approved for clinical treatments. We envisaged that PARP inhibition could be potentiated by simultaneously modulating the expression of PARP 1 and the enzyme activity, by a two-pronged strategy. A noncanonical G-quadruplex-forming sequence within the PARP1 promoter has been recently identified. In this study, we explored the potential binding of clinically approved PARP1 inhibitors to the G-quadruplex structure found at the gene promoter region. The results obtained by NMR, CD, and fluorescence titration confirmed by molecular modeling demonstrated that two out the four PARP1 inhibitors studied are capable of forming defined complexes with the PARP1 G-quadruplex. These results open the possibility of exploring the development of better G-quadruplex binders that, in turn, may also inhibit the enzyme.


Assuntos
Quadruplex G , Modelos Moleculares , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/química , Regiões Promotoras Genéticas , Benzimidazóis/química , Benzimidazóis/farmacologia , DNA/química , DNA/efeitos dos fármacos , Humanos , Indazóis/química , Indazóis/farmacologia , Espectroscopia de Ressonância Magnética , Ftalazinas/química , Ftalazinas/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
15.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204214

RESUMO

Curaxins and especially the second-generation derivative curaxin CBL0137 have important antitumor activities in multiple cancers such as glioblastoma, melanoma and others. Although most of the authors suggest that their mechanism of action comes from the activation of p53 and inactivation of NF-kB by targeting FACT, there is evidence supporting the involvement of DNA binding in their antitumor activity. In this work, the DNA binding properties of curaxin CBL0137 with model quadruplex DNA oligomers were studied by 1H NMR, CD, fluorescence and molecular modeling. We provided molecular details of the interaction of curaxin with two G-quadruplex structures, the single repeat of human telomere d(TTAGGGT)4 and the c-myc promoter Pu22 sequence. We also performed 1H and 31P NMR experiments were also performed in order to investigate the interaction with duplex DNA models. Our data support the hypothesis that the interaction of curaxin with G-quadruplex may provide a novel insight into the DNA-binding properties of CBL0137, and it will be helpful for the design of novel selective DNA-targeting curaxin analogues.


Assuntos
Carbazóis/química , DNA/química , Quadruplex G , Substâncias Macromoleculares/química , Carbazóis/farmacologia , DNA/metabolismo , Quadruplex G/efeitos dos fármacos , Humanos , Substâncias Macromoleculares/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Telômero/genética , Telômero/metabolismo
16.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073599

RESUMO

Conjugation of small molecules such as lipids or receptor ligands to anti-cancer drugs has been used to improve their pharmacological properties. In this work, we studied the biological effects of several small-molecule enhancers into a short oligonucleotide made of five floxuridine units. Specifically, we studied adding cholesterol, palmitic acid, polyethyleneglycol (PEG 1000), folic acid and triantennary N-acetylgalactosamine (GalNAc) as potential enhancers of cellular uptake. As expected, all these molecules increased the internalization efficiency with different degrees depending on the cell line. The conjugates showed antiproliferative activity due to their metabolic activation by nuclease degradation generating floxuridine monophosphate. The cytotoxicity and apoptosis assays showed an increase in the anti-cancer activity of the conjugates related to the floxuridine oligomer, but this effect did not correlate with the internalization results. Palmitic and folic acid conjugates provide the highest antiproliferative activity without having the highest internalization results. On the contrary, cholesterol oligomers that were the best-internalized oligomers had poor antiproliferative activity, even worse than the unmodified floxuridine oligomer. Especially relevant is the effect induced by palmitic and folic acid derivatives generating the most active drugs. These results are of special interest for delivering other therapeutic oligonucleotides.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citotoxinas , Floxuridina , Oligonucleotídeos , Citotoxinas/química , Citotoxinas/farmacocinética , Citotoxinas/farmacologia , Floxuridina/química , Floxuridina/farmacocinética , Floxuridina/farmacologia , Células HeLa , Células Hep G2 , Humanos , Oligonucleotídeos/química , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/farmacologia
17.
Acta Biomater ; 130: 211-222, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116228

RESUMO

Green fluorescent protein (GFP) is a widely used scaffold for protein-based targeted nanomedicines because of its high biocompatibility, biological neutrality and outstanding structural stability. However, being immunogenicity a major concern in the development of drug carriers, the use of exogenous proteins such as GFP in clinics might be inadequate. Here we report a human nidogen-derived protein (HSNBT), rationally designed to mimic the structural and functional properties of GFP as a scaffold for nanomedicine. For that, a GFP-like ß-barrel, containing the G2 domain of the human nidogen, has been rationally engineered to obtain a biologically neutral protein that self-assembles as 10nm-nanoparticles. This scaffold is the basis of a humanized nanoconjugate, where GFP, from the well-characterized protein T22-GFP-H6, has been substituted by the nidogen-derived GFP-like HSNBT protein. The resulting construct T22-HSNBT-H6, is a humanized CXCR4-targeted nanoparticle that selectively delivers conjugated genotoxic Floxuridine into cancer CXCR4+ cells. Indeed, the administration of T22-HSNBT-H6-FdU in a CXCR4-overexpressing colorectal cancer mouse model results in an even more efficient selective antitumoral effect than that shown by its GFP-counterpart, in absence of systemic toxicity. Therefore, the newly developed GFP-like protein scaffold appears as an ideal candidate for the development of humanized protein nanomaterials and successfully supports the tumor-targeted nanoscale drug T22-HSNBT-H6-FdU. STATEMENT OF SIGNIFICANCE: Targeted nanomedicine seeks for humanized and biologically neutral protein carriers as alternative of widely used but immunogenic exogenous protein scaffolds such as green fluorescent protein (GFP). This work reports for the first time the rational engineering of a human homolog of the GFP based in the human nidogen (named HSNBT) that shows full potential to be used in humanized protein-based targeted nanomedicines. This has been demonstrated in T22-HSNBT-H6-FdU, a humanized CXCR4-targeted protein nanoconjugate able to selectively deliver its genotoxic load into cancer cells.


Assuntos
Portadores de Fármacos , Nanomedicina , Sistemas de Liberação de Medicamentos , Proteínas de Fluorescência Verde , Humanos , Nanoconjugados
18.
Mol Ther Nucleic Acids ; 24: 807-821, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33996261

RESUMO

Systemic lupus erythematosus is a highly complex and heterogeneous autoimmune disease mostly mediated by B cells. It is characterized by circulating self-reactive antibodies that deposit and form immune complexes in kidney, leading to irreparable tissue damage and resulting in lupus nephritis. In a New Zealand Black X New Zealand White F1 mouse model, we tested two different small interfering RNA (siRNA) silencing treatments against interferon regulatory factor 5 (IRF5) and B cell-activating factor (BLYSS) expression and their combination in a second set of animals. The administration of these two siRNAs separately prevented the progression of proteinuria and albuminuria at similar levels to that in cyclophosphamide animals. These treatments effectively resulted in a reduction of serum anti-double-stranded DNA (dsDNA) antibodies and histopathological renal score compared with non-treated group. Treated groups showed macrophage, T cell, and B cell infiltrate reduction in renal tissue. Moreover, kidney gene expression analysis revealed that siRNA treatments modulated very few pathways in contrast to cyclophosphamide, despite showing similar therapeutic effects. Additionally, the combined therapy tested in a second set of animals, in which the disease appeared more virulent, exhibited better results than monotherapies in the disease progression, delaying the disease onset and ameliorating the disease outcome. Herein, we provide the potential therapeutic effect of both selective IRF5 and BLYSS silencing as an effective and potential treatment, particularly in early phases of the disease.

19.
Chemistry ; 27(26): 7351-7355, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33772916

RESUMO

We report the structural effect of 2'-deoxy-2',2'-difluorocytidine (dFdC) insertions in the DNA strand of a DNA : RNA hybrid duplex and in a self-complementary DNA : DNA duplex. In both cases, the modification slightly destabilizes the duplex and provokes minor local distortions that are more pronounced in the case of the DNA : RNA hybrid. Analysis of the solution structures determined by NMR methods show that dFdC is an adaptable derivative that adopts North type sugar conformation when inserted in pure DNA, or a South sugar conformation in the context of DNA : RNA hybrids. In this latter context, South sugar pucker favors the formation of a 2'F⋅⋅H8 attractive interaction with a neighboring purine, which compensates the destabilizing effect of base pair distortions. These interactions share some features with pseudohydrogen bonds described previously in other nucleic acids structures with fluorine modified sugars.


Assuntos
DNA , RNA , Desoxicitidina/análogos & derivados , Conformação de Ácido Nucleico , Gencitabina
20.
Sci Rep ; 11(1): 3869, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594142

RESUMO

Poly ADP-ribose polymerases (PARP) are key proteins involved in DNA repair, maintenance as well as regulation of programmed cell death. For this reason they are important therapeutic targets for cancer treatment. Recent studies have revealed a close interplay between PARP1 recruitment and G-quadruplex stabilization, showing that PARP enzymes are activated upon treatment with a G4 ligand. In this work the DNA binding properties of a PARP-1 inhibitor derived from 7-azaindole-1-carboxamide, (2-[6-(4-pyrrolidin-1-ylmethyl-phenyl)-pyrrolo[2,3-b]pyridin-1-yl]-acetamide, compound 1) with model duplex and quadruplex DNA oligomers were studied by NMR, CD, fluorescence and molecular modelling. We provide evidence that compound 1 is a strong G-quadruplex binder. In addition we provide molecular details of the interaction of compound 1 with two model G-quadruplex structures: the single repeat of human telomeres, d(TTAGGGT)4, and the c-MYC promoter Pu22 sequence. The formation of defined and strong complexes with G-quadruplex models suggests a dual G4 stabilization/PARP inhibition mechanism of action for compound 1 and provides the molecular bases of its therapeutic potential.


Assuntos
Antineoplásicos/metabolismo , Quadruplex G , Genes myc , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Telômero/metabolismo , Antineoplásicos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Regiões Promotoras Genéticas , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...