Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(21): e0114921, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34406827

RESUMO

The cnm gene, coding for the glycosylated collagen- and laminin-binding surface adhesin Cnm, is found in the genomes of approximately 20% of Streptococcus mutans clinical isolates and is associated with systemic infections and increased caries risk. Other surface-associated collagen-binding proteins of S. mutans, such as P1 and WapA, have been demonstrated to form an amyloid quaternary structure with functional implications within biofilms. In silico analysis predicted that the ß-sheet-rich N-terminal collagen-binding domain (CBD) of Cnm has a propensity for amyloid aggregation, whereas the threonine-rich C-terminal domain was predicted to be disorganized. In this study, thioflavin-T fluorescence and electron microscopy were used to show that Cnm forms amyloids in either its native glycosylated or recombinant nonglycosylated form and that the CBD of Cnm is the main amyloidogenic unit of Cnm. We then performed a series of in vitro, ex vivo, and in vivo assays to characterize the amylogenic properties of Cnm. In addition, Congo red birefringence indicated that Cnm is a major amyloidogenic protein of S. mutans biofilms. Competitive binding assays using collagen-coated microtiter plates and dental roots, a substrate rich in collagen, revealed that Cnm monomers inhibit S. mutans binding to collagenous substrates, whereas Cnm amyloid aggregates lose this property. Thus, while Cnm contributes to recognition and initial binding of S. mutans to collagen-rich surfaces, amyloid formation by Cnm might act as a negative regulatory mechanism to modulate collagen-binding activity within S. mutans biofilms and warrants further investigation. IMPORTANCE Streptococcus mutans is a keystone pathogen that promotes caries by acidifying the dental biofilm milieu. The collagen- and laminin-binding glycoprotein Cnm is a virulence factor of S. mutans. Expression of Cnm by S. mutans is hypothesized to contribute to niche expansion, allowing colonization of multiple sites in the body, including collagen-rich surfaces such as dentin and heart valves. Here, we suggest that Cnm function might be modulated by its aggregation status. As a monomer, its primary function is to promote attachment to collagenous substrates via its collagen-binding domain (CBD). However, in later stages of biofilm maturation, the same CBD of Cnm could self-assemble into amyloid fibrils, losing the ability to bind to collagen and likely becoming a component of the biofilm matrix. Our findings shed light on the role of functional amyloids in S. mutans pathobiology and ecology.


Assuntos
Adesinas Bacterianas/metabolismo , Amiloide , Proteínas Amiloidogênicas/metabolismo , Proteínas de Transporte/metabolismo , Colágeno/metabolismo , Streptococcus mutans , Amiloide/metabolismo , Streptococcus mutans/genética
2.
Sci Rep ; 8(1): 4705, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549320

RESUMO

Protein glycosylation has been described as the most abundant and complex post-translational modification occurring in nature. Recent studies have enhanced our view of how this modification occurs in bacteria highlighting the role of protein glycosylation in various processes such as biofilm formation, virulence and host-microbe interactions. We recently showed that the collagen- and laminin-binding adhesin Cnm of the dental pathogen Streptococcus mutans is post-translationally modified by the PgfS glycosyltransferase. Following this initial identification of Cnm as a glycoprotein, we have now identified additional genes (pgfM1, pgfE and pgfM2) that are also involved in the posttranslational modification of Cnm. Similar to the previously characterized ΔpgfS strain, inactivation of pgfM1, pgfE or pgfM2 directly impacts Cnm by altering its migration pattern, proteolytic stability and function. In addition, we identified the wall-associated protein A (WapA) as an additional substrate of Pgf-dependent modification. We conclude that the pgS-pgfM1-pgfE-pgfM2 operon encodes for a protein machinery that can modify, likely through the addition of glycans, both core and non-core gene products in S. mutans.


Assuntos
Proteínas de Bactérias/metabolismo , Glicosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Óperon , Processamento de Proteína Pós-Traducional , Infecções Estreptocócicas/microbiologia , Streptococcus mutans/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Sequência de Aminoácidos , Aderência Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Colágeno/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/microbiologia , Regulação Bacteriana da Expressão Gênica , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Streptococcus mutans/genética , Streptococcus mutans/crescimento & desenvolvimento , Virulência
3.
Braz Dent J ; 28(4): 428-434, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29160393

RESUMO

During insertion of titanium dental implants, particles may shear from the implant to the periimplant region causing osteolysis, and their association with bacteria can exacerbate the inflammatory reaction. However, the association of a high invasive bacterium from the oral cavity, Porphyromonas gingivalis (Pg), and titanium particles remains unknown. This study evaluated pro-inflammatory reaction of human macrophages in contact with micro and nanoparticles of titanium associated with Porphyromonas gingivalis lipopolysaccharide (PgLPS). THP-1 cell were used and treated for 12, 24 and 48 h following 6 groups: Control(C), PgLPS (L); Microparticles (M); Nanoparticles (N); PgLPS and microparticles (LM); PgLPS and nanoparticles (LN). The following assays were carried out: i) cell viability using MTS, ii) cell morphology by SEM and iii) expression of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1ß) and interleukin-6 (IL-6) by qRT-PCR and ELISA. For statistics two-way ANOVA followed by Tukey's test was used (p<0.05). After treatment, cells presented similar viability and morphology demonstrating that the treatments were not able to induce cell death. Gene expression was significantly higher for TNF-α and IL1-ß after 12 h, and for IL-6 after 24 h in the N and LN groups. Cytokine production over time was an ascending curve for TNF-α with the peak at 48 h and IL1-ß and IL-6 had a straight line among the time points, although cells from N group presented a significant production of IL-6 at 48 h. In conclusion, these results suggest that titanium nanoparticles stimulate stronger pro-inflammatory response in macrophages, independent of their association with LPS from P.gingivalis.


Assuntos
Implantes Dentários , Macrófagos/imunologia , Porphyromonas gingivalis/efeitos dos fármacos , Titânio/farmacologia , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Microscopia Eletrônica de Varredura , Antígenos O/efeitos dos fármacos , Tamanho da Partícula , Porphyromonas gingivalis/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Titânio/química
4.
Braz. dent. j ; 28(4): 428-434, July-Aug. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-888669

RESUMO

Abstract During insertion of titanium dental implants, particles may shear from the implant to the periimplant region causing osteolysis, and their association with bacteria can exacerbate the inflammatory reaction. However, the association of a high invasive bacterium from the oral cavity, Porphyromonas gingivalis (Pg), and titanium particles remains unknown. This study evaluated pro-inflammatory reaction of human macrophages in contact with micro and nanoparticles of titanium associated with Porphyromonas gingivalis lipopolysaccharide (PgLPS). THP-1 cell were used and treated for 12, 24 and 48 h following 6 groups: Control(C), PgLPS (L); Microparticles (M); Nanoparticles (N); PgLPS and microparticles (LM); PgLPS and nanoparticles (LN). The following assays were carried out: i) cell viability using MTS, ii) cell morphology by SEM and iii) expression of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) by qRT-PCR and ELISA. For statistics two-way ANOVA followed by Tukey's test was used (p<0.05). After treatment, cells presented similar viability and morphology demonstrating that the treatments were not able to induce cell death. Gene expression was significantly higher for TNF-α and IL1-β after 12 h, and for IL-6 after 24 h in the N and LN groups. Cytokine production over time was an ascending curve for TNF-α with the peak at 48 h and IL1-β and IL-6 had a straight line among the time points, although cells from N group presented a significant production of IL-6 at 48 h. In conclusion, these results suggest that titanium nanoparticles stimulate stronger pro-inflammatory response in macrophages, independent of their association with LPS from P.gingivalis.


Resumo Durante a inserção de implantes dentários partículas de titânio podem ser liberadas na região peri-implantar levando ao processo de osteólise e a associação com a bactéria pode exacerbar ainda mais a reação inflamatória. Entretanto, a associação de uma bactéria altamente invasiva da cavidade oral, Porphyromonas gingivalis (Pg) e partículas de titânio ainda não foi investigada. Este estudo avaliou a reação pró-inflamatória de macrófagos humanos em contato com micro e nanopartículas de titânio associada a lipopolissacarídeo P. gingivalis (PgLPS). As células THP-1 foram utilizadas e tratadas durante 12, 24 e 48 h nos 6 seguintes grupos: Controle (C), PgLPS (L); micropartículas (M); nanopartículas (N); PgLPS e micropartículas (LM); PgLPS e nanopartículas (LN). Em seguida foram realizados os seguintes ensaios: i) a viabilidade celular utilizando MTS, ii) a morfologia celular por MEV e iii) expressão do fator de necrose tumoral alfa (TNF-α), interleucina-1 beta (IL-1β) e interleucina 6 (IL-6) por qRT-PCR e ELISA. Como estatística foi realizado o teste ANOVA two-way seguido pelo teste de Tukey (p<0,05). Após o tratamento, as células apresentaram viabilidade e morfologia semelhantes, demonstrando que os tratamentos não foram capazes de induzir a morte celular. A expressão de genes foi significativamente mais elevada para o TNF-α e IL1-β após 12h, e para a IL-6 após 24 horas em N e grupos de LN. A produção de citocinas em relação ao tempo representou uma curva ascendente para o TNF-α com o pico em 48 h, enquanto que para IL1-β e IL-6 se apresentou como uma linha reta com relação ao tempo, exceto pelo grupo N que foi significativo para IL-6 em 48 h . Conclui-se, a partir destes resultados, que as nanopartículas de titânio produziram o maior estímulo na resposta pró-inflamatória nos macrófagos, independente da sua associação com LPS de P. gingivalis.


Assuntos
Humanos , Titânio/farmacologia , Implantes Dentários , Porphyromonas gingivalis/efeitos dos fármacos , Macrófagos/imunologia , Tamanho da Partícula , Titânio/química , Ensaio de Imunoadsorção Enzimática , Microscopia Eletrônica de Varredura , Expressão Gênica , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Porphyromonas gingivalis/imunologia , Mediadores da Inflamação/metabolismo , Antígenos O/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Macrófagos/metabolismo
5.
Virulence ; 8(1): 18-29, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27260618

RESUMO

In S. mutans, the expression of the surface glycoprotein Cnm mediates binding to extracellular matrix proteins, endothelial cell invasion and virulence in the Galleria mellonella invertebrate model. To further characterize Cnm as a virulence factor, the cnm gene from S. mutans strain OMZ175 was expressed in the non-pathogenic Lactococcus lactis NZ9800 using a nisin-inducible system. Despite the absence of the machinery necessary for Cnm glycosylation, Western blot and immunofluorescence microscopy analyses demonstrated that Cnm was effectively expressed and translocated to the cell wall of L. lactis. Similar to S. mutans, expression of Cnm in L. lactis enabled robust binding to collagen and laminin, invasion of human coronary artery endothelial cells and increased virulence in G. mellonella. Using an ex vivo human heart tissue colonization model, we showed that Cnm-positive strains of either S. mutans or L. lactis outcompete their Cnm-negative counterparts for tissue colonization. Finally, Cnm expression facilitated L. lactis adhesion and colonization in a rabbit model of infective endocarditis. Collectively, our results provide unequivocal evidence that binding to extracellular matrices mediated by Cnm is an important virulence attribute of S. mutans and confirm the usefulness of the L. lactis heterologous system for further characterization of bacterial virulence factors.


Assuntos
Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citoplasma/microbiologia , Endocardite Bacteriana/microbiologia , Lactococcus lactis/genética , Miócitos Cardíacos/microbiologia , Animais , Colágeno/metabolismo , Vasos Coronários/citologia , Vasos Coronários/microbiologia , Modelos Animais de Doenças , Células Endoteliais/microbiologia , Humanos , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/patogenicidade , Lactococcus lactis/fisiologia , Laminina/metabolismo , Larva/microbiologia , Mariposas/microbiologia , Nisina/genética , Coelhos , Streptococcus mutans/genética , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Bio Protoc ; 7(11)2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32699810

RESUMO

The interaction of pathogens with host tissues is a key step towards successful colonization and establishment of an infection. During bacteremia, pathogens can virtually reach all organs in the human body (e.g., heart, kidney, spleen) but host immunity, blood flow and tissue integrity generally prevents bacterial colonization. Yet, patients with cardiac conditions (e.g., congenital heart disease, atherosclerosis, calcific aortic stenosis, prosthetic valve recipients) are at a higher risk of bacterial infection. This protocol was adapted from an established ex vivo porcine heart adhesion model and takes advantage of the availability of heart tissues obtained from patients that underwent aortic valve replacement surgery. In this protocol, fresh tissues are used to assess the direct interaction of bacterial pathogens associated with cardiovascular infections, such as the oral bacterium Streptococcus mutans, with human aortic valve tissues.

7.
Sci Rep ; 6: 32841, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27604325

RESUMO

Biofilms are comprised of bacterial-clusters (microcolonies) enmeshed in an extracellular matrix. Streptococcus mutans can produce exopolysaccharides (EPS)-matrix and assemble microcolonies with acidic microenvironments that can cause tooth-decay despite the surrounding neutral-pH found in oral cavity. How the matrix influences the pH and bacterial activity locally remains unclear. Here, we simultaneously analyzed in situ pH and gene expression within intact biofilms and measured the impact of damage to the surrounding EPS-matrix. The spatiotemporal changes of these properties were characterized at a single-microcolony level following incubation in neutral-pH buffer. The middle and bottom-regions as well as inner-section within the microcolony 3D structure were resistant to neutralization (vs. upper and peripheral-region), forming an acidic core. Concomitantly, we used a green fluorescent protein (GFP) reporter to monitor expression of the pH-responsive atpB (PatpB::gfp) by S. mutans within microcolonies. The atpB expression was induced in the acidic core, but sharply decreased at peripheral/upper microcolony regions, congruent with local pH microenvironment. Enzymatic digestion of the surrounding matrix resulted in nearly complete neutralization of microcolony interior and down-regulation of atpB. Altogether, our data reveal that biofilm matrix facilitates formation of an acidic core within microcolonies which in turn activates S. mutans acid-stress response, mediating both the local environment and bacterial activity in situ.


Assuntos
Biofilmes , Concentração de Íons de Hidrogênio , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/fisiologia , Streptococcus mutans/citologia , Streptococcus mutans/fisiologia , Adenosina Trifosfatases/genética , Difusão , Matriz Extracelular/química , Matriz Extracelular/fisiologia , Modelos Teóricos , Streptococcus mutans/genética
8.
Infect Immun ; 83(5): 2001-10, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733523

RESUMO

Streptococcus mutans is the etiological agent of dental caries and one of the many bacterial species implicated in infective endocarditis. The expression of the collagen-binding protein Cnm by S. mutans has been associated with extraoral infections, but its relevance for dental caries has only been theorized to date. Due to the collagenous composition of dentinal and root tissues, we hypothesized that Cnm may facilitate the colonization of these surfaces, thereby enhancing the pathogenic potential of S. mutans in advancing carious lesions. As shown for extraoral endothelial cell lines, Cnm mediates the invasion of oral keratinocytes and fibroblasts by S. mutans. In this study, we show that in the Cnm(+) native strain, OMZ175, Cnm mediates stringent adhesion to dentinal and root tissues as well as collagen-coated surfaces and promotes both cariogenicity and carriage in vivo. In vitro, ex vivo, and in vivo experiments revealed that while Cnm is not universally required for S. mutans cariogenicity, it contributes to (i) the invasion of the oral epithelium, (ii) enhanced binding on collagenous surfaces, (iii) implantation of oral biofilms, and (IV) the severity of caries due to a native Cnm(+) isolate. Taken together, our findings reveal that Cnm is a colonization factor that contributes to the pathogenicity of certain S. mutans strains in their native habitat, the oral cavity.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Proteínas de Transporte/metabolismo , Cárie Dentária/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus mutans/fisiologia , Animais , Portador Sadio/microbiologia , Dentina/microbiologia , Modelos Animais de Doenças , Feminino , Ratos Sprague-Dawley , Streptococcus mutans/crescimento & desenvolvimento , Raiz Dentária/microbiologia
9.
Bio Protoc ; 5(7)2015 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29644253

RESUMO

Bacterial glycoproteins are of increasing interest due to their abundance in nature and importance in health and infectious diseases. However, only a very small fraction of bacterial glycoproteins have been characterized and its post-translational modification machinery identified. While analysis of glycoproteins can be achieved through various techniques, this is often limited by the specific characteristics of individual proteins such as type and level of glycosylation. Lectins are sugar-binding proteins that recognize specific glycoconjugates in a manner similar to antigen-antibody interactions. Here, we describe a simple method for the detection of glycoproteins using lectin-based Western blot analysis, which can be applied to different organisms and coupled with various other strategies for complementary analysis.

10.
J Bacteriol ; 196(15): 2789-97, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837294

RESUMO

Expression of the surface protein Cnm has been directly implicated in the ability of certain strains of Streptococcus mutans to bind to collagen and to invade human coronary artery endothelial cells (HCAEC) and in the killing of Galleria mellonella. Sequencing analysis of Cnm(+) strains revealed that cnm is located between the core genes SMU.2067 and SMU.2069. Reverse transcription-PCR (RT-PCR) analysis showed that cnm is cotranscribed with SMU.2067, encoding a putative glycosyltransferase referred to here as PgfS (protein glycosyltransferase of streptococci). Notably, Cnm contains a threonine-rich domain predicted to undergo O-linked glycosylation. The previously shown abnormal migration pattern of Cnm, the presence of the threonine-rich domain, and the molecular linkage of cnm with pgfS lead us to hypothesize that PgfS modifies Cnm. A ΔpgfS strain showed defects in several traits associated with Cnm expression, including collagen binding, HCAEC invasion, and killing of G. mellonella. Western blot analysis revealed that Cnm from the ΔpgfS mutant migrated at a lower molecular weight than that from the parent strain. In addition, Cnm produced by ΔpgfS was highly susceptible to proteinase K degradation, in contrast to the high-molecular-weight Cnm version found in the parent strain. Lectin-binding analyses confirmed the glycosylated nature of Cnm and strongly suggested the presence of N-acetylglucosamine residues attached to Cnm. Based on these findings, the phenotypes observed in ΔpgfS are most likely associated with defects in Cnm glycosylation that affects protein function, stability, or both. In conclusion, this study demonstrates that Cnm is a glycoprotein and that posttranslational modification mediated by PgfS contributes to the virulence-associated phenotypes linked to Cnm.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Transporte/metabolismo , Glicosiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Streptococcus mutans/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/isolamento & purificação , Animais , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Colágeno/metabolismo , Vasos Coronários , Células Endoteliais/microbiologia , Ligação Genética , Glicosilação , Glicosiltransferases/genética , Humanos , Lectinas/metabolismo , Mariposas , Fenótipo , Ligação Proteica , Estabilidade Proteica , Proteólise , Deleção de Sequência , Infecções Estreptocócicas/microbiologia , Streptococcus mutans/genética , Streptococcus mutans/patogenicidade , Virulência
11.
PLoS One ; 8(6): e64875, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23755154

RESUMO

Enterococcus faecalis is an opportunistic nosocomial pathogen that is highly resistant to a variety of environmental insults, including an intrinsic tolerance to antimicrobials that target the cell wall (CW). With the goal of determining the CW-stress stimulon of E. faecalis, the global transcriptional profile of E. faecalis OG1RF exposed to ampicillin, bacitracin, cephalotin or vancomycin was obtained via microarrays. Exposure to the ß-lactams ampicillin and cephalotin resulted in the fewest transcriptional changes with 50 and 192 genes differentially expressed 60 min after treatment, respectively. On the other hand, treatment with bacitracin or vancomycin for 60 min affected the expression of, respectively, 377 and 297 genes. Despite the differences in the total number of genes affected, all antibiotics induced a very similar gene expression pattern with an overrepresentation of genes encoding hypothetical proteins, followed by genes encoding proteins associated with cell envelope metabolism as well as transport and binding proteins. In particular, all drug treatments, most notably bacitracin and vancomycin, resulted in an apparent metabolic downshift based on the repression of genes involved in translation, energy metabolism, transport and binding. Only 19 genes were up-regulated by all conditions at both the 30 and 60 min time points. Among those 19 genes, 4 genes encoding hypothetical proteins (EF0026, EF0797, EF1533 and EF3245) were inactivated and the respective mutant strains characterized in relation to antibiotic tolerance and virulence in the Galleria mellonella model. The phenotypes obtained for two of these mutants, ΔEF1533 and ΔEF3245, support further characterization of these genes as potential candidates for the development of novel preventive or therapeutic approaches.


Assuntos
Antibacterianos/farmacologia , Parede Celular/metabolismo , Enterococcus faecalis/citologia , Animais , Parede Celular/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidade , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Loci Gênicos , Cinética , Lepidópteros/efeitos dos fármacos , Lepidópteros/microbiologia , Testes de Sensibilidade Microbiana , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...