Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2356270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797998

RESUMO

High-fat diets alter gut barrier integrity, leading to endotoxemia by impacting epithelial functions and inducing endoplasmic reticulum (ER) stress in intestinal secretory goblet cells. Indeed, ER stress, which is an important contributor to many chronic diseases such as obesity and obesity-related disorders, leads to altered synthesis and secretion of mucins that form the protective mucus barrier. In the present study, we investigated the relative contribution of omega-3 polyunsaturated fatty acid (PUFAs)-modified microbiota to alleviating alterations in intestinal mucus layer thickness and preserving gut barrier integrity. Male fat-1 transgenic mice (exhibiting endogenous omega-3 PUFAs tissue enrichment) and wild-type (WT) littermates were fed either an obesogenic high-fat diet (HFD) or a control diet. Unlike WT mice, HFD-fed fat-1 mice were protected against mucus layer alterations as well as an ER stress-mediated decrease in mucin expression. Moreover, cecal microbiota transferred from fat-1 to WT mice prevented changes in the colonic mucus layer mainly through colonic ER stress downregulation. These findings highlight a novel feature of the preventive effects of omega-3 fatty acids against intestinal permeability in obesity-related conditions.


Assuntos
Colo , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Ácidos Graxos Ômega-3 , Microbioma Gastrointestinal , Mucosa Intestinal , Camundongos Transgênicos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Masculino , Ácidos Graxos Ômega-3/metabolismo , Colo/microbiologia , Colo/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Obesidade/metabolismo , Obesidade/microbiologia , Muco/metabolismo , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , Células Caliciformes/metabolismo , Transplante de Microbiota Fecal
2.
Physiol Plant ; 176(1): e14223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38383937

RESUMO

We previously provided evidence for the contribution of pyoverdine to the iron nutrition of Arabidopsis. In the present article, we further analyze the mechanisms and physiology of the adaptations underlying plant iron nutrition through Fe(III)-pyoverdine (Fe(III)-pvd). An integrated approach combining microscopy and nanoscale secondary ion mass spectrometry (NanoSIMS) on plant samples was adopted to localize pyoverdine in planta and assess the impact of this siderophore on the plant iron status and root cellular morphology. The results support a possible plant uptake mechanism of the Fe(III)-pvd complex by epidermal root cells via a non-reductive process associated with the presence of more vesicles. Pyoverdine was transported to the central cylinder via the symplastic and/or trans-cellular pathway(s), suggesting a possible root-to-shoot translocation. All these processes led to enhanced plant iron nutrition, as previously shown. Overall, these findings suggest that bacterial siderophores contribute to plant iron uptake and homeostasis.


Assuntos
Arabidopsis , Ferro , Sideróforos/química , Transporte Biológico , Compostos Férricos
3.
Biomedicines ; 12(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255244

RESUMO

The mucosal pellicle (MP) is a biological film protecting the oral mucosa. It is composed of bounded salivary proteins and transmembrane mucin MUC1 expressed by oral epithelial cells. Previous research indicates that MUC1 expression enhances the binding of the main salivary protein forming the MP, MUC5B. This study investigated the influence of MUC1 structure on MP formation. A TR146 cell line, which does not express MUC1 natively, was stably transfected with genes coding for three MUC1 isoforms differing in the structure of the two main extracellular domains: the VNTR domain, exhibiting a variable number of tandem repeats, and the SEA domain, maintaining the two bound subunits of MUC1. Semi-quantification of MUC1 using dot blot chemiluminescence showed comparable expression levels in all transfected cell lines. Semi-quantification of MUC5B by immunostaining after incubation with saliva revealed that MUC1 expression significantly increased MUC5B adsorption. Neither the VNTR domain nor the SEA domain was influenced MUC5B anchoring, suggesting the key role of the MUC1 N-terminal domain. AFM-IR nanospectroscopy revealed discernible shifts indicative of changes in the chemical properties at the cell surface due to the expression of the MUC1 isoform. Furthermore, the observed chemical shifts suggest the involvement of hydrophobic effects in the interaction between MUC1 and salivary proteins.

4.
Br J Cancer ; 130(1): 63-72, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37973956

RESUMO

BACKGROUND: Circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), and extracellular vesicles (EVs) are minimally invasive liquid biopsy biomarkers. This study investigated whether they predict prognosis, alone or in combination, in heterogenous unbiased non-small cell lung cancer (NSCLC) patients. METHODS: Plasma samples of 54 advanced NSCLC patients from a prospective clinical trial. CtDNA mutations were identified using the UltraSEEK™ Lung Panel (MassARRAY® technology). PD-L1 expression was assessed in small EVs (sEVs) using an enzyme-linked immunosorbent assay. RESULTS: At least one ctDNA mutation was detected in 37% of patients. Mutations were not correlated with overall survival (OS) (HR = 1.1, 95% CI = 0.55; 1.83, P = 0.980) and progression-free survival (PFS) (HR = 1.00, 95% CI = 0.57-1.76, P = 0.991). High PD-L1+ sEV concentration was correlated with OS (HR = 1.14, 95% CI = 1.03-1.26, P = 0.016), but not with PFS (HR = 1.08, 95% CI = 0.99-1.18, P = 0.095). The interaction analysis suggested that PD-L1+ sEV correlation with PFS changed in function of CTC presence/absence (P interaction = 0.036). The combination analysis highlighted worse prognosis for patients with CTCs and high PD-L1+ sEV concentration (HR = 7.65, 95% CI = 3.11-18.83, P < 0.001). The mutational statuses of ctDNA and tumour tissue were significantly correlated (P = 0.0001). CONCLUSION: CTCs and high PD-L1+ sEV concentration correlated with PFS and OS, but not ctDNA mutations. Their combined analysis may help to identify patients with worse OS. TRIAL REGISTRATION: NCT02866149, Registered 01 June 2015, https://clinicaltrials.gov/ct2/show/study/NCT02866149 .


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Prognóstico , Neoplasias Pulmonares/patologia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Estudos Prospectivos , Vesículas Extracelulares/metabolismo , Biópsia Líquida , Biomarcadores Tumorais/genética
5.
Exp Dermatol ; 31(6): 869-877, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34994009

RESUMO

Exosomes, as potential circulated biomarkers, have recently become a topic of interest in the field of oncology. Immune checkpoint molecule PD-L1 has recently been detected in circulating exosomes from cancer patients. The purpose of this work was to evaluate PD-L1 levels in circulating exosomes (Exo-PD-L1) isolated from patients' plasma suffering from Merkel cell carcinoma (MCC). We conducted a prospective bicentric cohort study. PD-L1 was analysed in circulating exosomes from plasma samples of patients suffering from MCC stage I to IV (according to the AJCC 8). Exosomes from 34 patients corresponding to 66 samples were analysed. PD-L1 was identified in circulating exosomes of MCC patients. Exo-PD-L1 levels of MCC patients were similar to healthy donors and lower than other cancers such as melanoma. Exo-PD-L1 levels tended to be higher in MCC patients with distant metastases. Furthermore, Exo-PD-L1 levels did not significantly vary over the course of the disease whatever the disease course or the response to treatment. This study assessed the presence of PD-L1 in circulating exosomes of MCC patients. The low levels of Exo-PD-L1 and small changes over the course of the disease may be due to the metastatic dissemination of MCC, which is mainly through the skin and lymph nodes rather than blood. PD-L1 was identified in circulating exosomes of MCC patients and tends to be higher in advanced disease. This preliminary study is a proof of concept of PD-L1 detection in circulating exosomes of MCC patients.


Assuntos
Carcinoma de Célula de Merkel , Exossomos , Neoplasias Cutâneas , Antígeno B7-H1 , Carcinoma de Célula de Merkel/patologia , Estudos de Coortes , Humanos , Estudos Prospectivos , Neoplasias Cutâneas/patologia
6.
Antioxidants (Basel) ; 10(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34829643

RESUMO

Aging is characterized by a progressive increase in oxidative stress, which favors lipid peroxidation and the formation of cholesterol oxide derivatives, including 7ß-hydroxycholesterol (7ß-OHC). This oxysterol, which is known to trigger oxidative stress, inflammation, and cell death, could contribute to the aging process and age-related diseases, such as sarcopenia. Identifying molecules or mixtures of molecules preventing the toxicity of 7ß-OHC is therefore an important issue. This study consists of determining the chemical composition of Tunisian Pistacia lentiscus L. seed oil (PLSO) used in the Tunisian diet and evaluating its ability to counteract the cytotoxic effects induced by 7ß-OHC in murine C2C12 myoblasts. The effects of 7ß-OHC (50 µM; 24 h), associated or not with PLSO, were studied on cell viability, oxidative stress, and on mitochondrial and peroxisomal damages induction. α-Tocopherol (400 µM) was used as the positive control for cytoprotection. Our data show that PLSO is rich in bioactive compounds; it contains polyunsaturated fatty acids, and several nutrients with antioxidant properties: phytosterols, α-tocopherol, carotenoids, flavonoids, and phenolic compounds. When associated with PLSO (100 µg/mL), the 7ß-OHC-induced cytotoxic effects were strongly attenuated. The cytoprotection was in the range of those observed with α-tocopherol. This cytoprotective effect was characterized by prevention of cell death and organelle dysfunction (restoration of cell adhesion, cell viability, and plasma membrane integrity; prevention of mitochondrial and peroxisomal damage) and attenuation of oxidative stress (reduction in reactive oxygen species overproduction in whole cells and at the mitochondrial level; decrease in lipid and protein oxidation products formation; and normalization of antioxidant enzyme activities: glutathione peroxidase (GPx) and superoxide dismutase (SOD)). These results provide evidence that PLSO has similar antioxidant properties than α-tocopherol used at high concentration and contains a mixture of molecules capable to attenuate 7ß-OHC-induced cytotoxic effects in C2C12 myoblasts. These data reinforce the interest in edible oils associated with the Mediterranean diet, such as PLSO, in the prevention of age-related diseases, such as sarcopenia.

7.
J Extracell Vesicles ; 9(1): 1766192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595915

RESUMO

Exosomes are nanovesicles released by all cells that can be found in the blood. A key point for their use as potential biomarkers in cancer is to differentiate tumour-derived exosomes from other circulating nanovesicles. Heat shock protein-70 (HSP70) has been shown to be abundantly expressed by cancer cells and to be associated with bad prognosis. We previously showed that exosomes derived from cancer cells carried HSP70 in the membrane while those from non-cancerous cells did not. In this work, we opened a prospective clinical pilot study including breast and lung cancer patients to determine whether it was possible to detect and quantify HSP70 exosomes in the blood of patients with solid cancers. We found that circulating exosomal HSP70 levels, but not soluble HSP70, reflected HSP70 content within the tumour biopsies. Circulating HSP70 exosomes increased in metastatic patients compared to non-metastatic patients or healthy volunteers. Further, we demonstrated that HSP70-exosome levels correlated with the disease status and, when compared with circulating tumour cells, were more sensitive tumour dissemination predictors. Finally, our case studies indicated that HSP70-exosome levels inversely correlated with response to the therapy and that, therefore, monitoring changes in circulating exosomal HSP70 might be useful to predict tumour response and clinical outcome.

8.
Plant Physiol ; 171(1): 675-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26956666

RESUMO

Pyoverdines are siderophores synthesized by fluorescent Pseudomonas spp. Under iron-limiting conditions, these high-affinity ferric iron chelators are excreted by bacteria in the soil to acquire iron. Pyoverdines produced by beneficial Pseudomonas spp. ameliorate plant growth. Here, we investigate the physiological incidence and mode of action of pyoverdine from Pseudomonas fluorescens C7R12 on Arabidopsis (Arabidopsis thaliana) plants grown under iron-sufficient or iron-deficient conditions. Pyoverdine was provided to the medium in its iron-free structure (apo-pyoverdine), thus mimicking a situation in which it is produced by bacteria. Remarkably, apo-pyoverdine abolished the iron-deficiency phenotype and restored the growth of plants maintained in the iron-deprived medium. In contrast to a P. fluorescens C7R12 strain impaired in apo-pyoverdine production, the wild-type C7R12 reduced the accumulation of anthocyanins in plants grown in iron-deficient conditions. Under this condition, apo-pyoverdine modulated the expression of around 2,000 genes. Notably, apo-pyoverdine positively regulated the expression of genes related to development and iron acquisition/redistribution while it repressed the expression of defense-related genes. Accordingly, the growth-promoting effect of apo-pyoverdine in plants grown under iron-deficient conditions was impaired in iron-regulated transporter1 and ferric chelate reductase2 knockout mutants and was prioritized over immunity, as highlighted by an increased susceptibility to Botrytis cinerea This process was accompanied by an overexpression of the transcription factor HBI1, a key node for the cross talk between growth and immunity. This study reveals an unprecedented mode of action of pyoverdine in Arabidopsis and demonstrates that its incidence on physiological traits depends on the plant iron status.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Ferro/metabolismo , Oligopeptídeos/farmacologia , Pseudomonas fluorescens/patogenicidade , Sideróforos/farmacologia , Ácido Abscísico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Etilenos/metabolismo , FMN Redutase/genética , FMN Redutase/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase , Ácidos Indolacéticos/metabolismo , Oligopeptídeos/metabolismo , Pseudomonas fluorescens/química , Pseudomonas fluorescens/metabolismo , Ácido Salicílico/metabolismo , Sideróforos/metabolismo
9.
Appl Environ Microbiol ; 75(7): 2250-2, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19201966

RESUMO

Cupriavidus metallidurans CH34 cells grown under sulfate-limited conditions accumulated up to six times more selenate than cells grown in sulfate-rich medium. The products of selenate reduction detected by X-ray absorption spectroscopy, electron microscopy, and energy-dispersive X-ray analysis did not define this strain as being a good candidate for bioremediation of selenate-contaminated environments.


Assuntos
Biotransformação , Cupriavidus/efeitos dos fármacos , Cupriavidus/metabolismo , Compostos de Selênio/metabolismo , Compostos de Selênio/toxicidade , Absorciometria de Fóton , Cupriavidus/química , Cupriavidus/ultraestrutura , Microscopia Eletrônica , Ácido Selênico , Espectrometria por Raios X
10.
J Biol Inorg Chem ; 13(5): 655-62, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18273650

RESUMO

After environmental contamination, U accumulates in the kidneys and in bones, where it causes visible damage. Recent in vitro data prove that the occurrence of citrate increases U bioavailability without changing its speciation. Two hypotheses can explain the role of citrate: it either modifies the U intracellular metabolization pathway, or it acts on the transport of U through cell membrane. To understand which mechanisms lead to increased bioavailability, we studied the speciation of U after accumulation in NRK-52E kidney cells. U speciation was first identified in various exposure media, containing citrate or not, in which U was supplied as U carbonate. The influence of serum proteins was analyzed in order to detect the formation of macromolecular complexes of U. Transmission electron microscopy (TEM) was employed to follow the evolution of the U species distribution among precipitated and soluble forms. Finally, extended X-ray absorption fine structure spectroscopy (EXAFS) enabled the precipitates observed to be identified as U-phosphate. It also demonstrated that the intracellular soluble form of U is U carbonate. These results suggest that citrate does not change U metabolization but rather plays a role in the intracellular accumulation pathway. U speciation inside cells was directly and clearly identified for the first time. These results elucidate the role of U speciation in terms of its bioavailability and consequent health effects.


Assuntos
Rim/metabolismo , Microscopia Eletrônica de Transmissão , Compostos de Urânio/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Rim/ultraestrutura , Células LLC-PK1 , Ratos , Análise Espectral , Suínos , Compostos de Urânio/farmacocinética , Raios X
11.
Toxicol Sci ; 98(2): 479-87, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17522072

RESUMO

Uranium (U) is a heavy metal used in the nuclear industry and for military applications. U compounds are toxic. Their toxicity is mediated either by their radioactivity or their chemical properties. Mammalian kidneys and bones are the main organs affected by U toxicity. Although the most characteristic response to U exposure is renal dysfunction, little information is available on the mechanisms of its toxicity at the molecular level. This report studied the genotoxicity of U. Apoptosis induction in normal rat kidney (NRK-52(E)) proximal cells was investigated as a function of exposure time or concentrations (0-800microM). In parallel, DNA damage was evaluated by several methods. In order to distinguish between the intrinsic and the extrinsic pathways of apoptosis, caspases-8, -9, -10 assays were conducted and the mitochondrial membrane potential was measured. Three methods were selected for their complementarities in the detection of genetic lesions. The comet assay was used for the detection of primary lesions of DNA. gamma-H2AX immunostaining was achieved to detect DNA double-strand breaks. The micronucleus assay was used to detect chromosomic breaks or losses. DNA damage and apoptosis were observed in a concentration-dependent manner. This study demonstrated that U is genotoxic from 300microM and induces caspase-dependent apoptosis cell death from 200microM mainly through the intrinsic pathway in NRK-52(E) cells. These results suggest that the DNA damage caused by U is reversible at low concentration (200-400microM) but becomes irreversible and leads to cell death for higher concentrations (500-800microM).


Assuntos
Apoptose , Mutagênicos/toxicidade , Urânio/toxicidade , Animais , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dano ao DNA , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/fisiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Testes para Micronúcleos , Ratos , Espécies Reativas de Oxigênio/metabolismo
12.
Chem Res Toxicol ; 19(12): 1637-42, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17173377

RESUMO

Uranium (U), as a heavy metal, is a strong chemical toxicant, which induces the damage to proximal tubule kidney cells. In order to reproduce U toxicity in vitro and to avoid precipitation, it is necessary to complex it with a strong ligand such as bicarbonate before dilution with cell culture medium. It was recently shown, in vitro on the NRK-52E normal renal tubular epithelial cells, that citrate increased the toxicity of U(VI)-bicarbonate complexes. This property was attributed to a change in U speciation, characterized by the occurrence of U(VI)-citrate complexes, which were supposed to be more toxic than U(VI)-bicarbonate. Here, we present the results of extended X-ray absorption fine structure spectroscopy (EXAFS) analyses of the media that were used to expose cells in vitro. Resulting data show that even when citrate is added to the exposure medium, the predominant species is U(VI)-bicarbonate. Nonetheless, citrate increases U(VI) toxicity and accelerates its intracellular accumulation kinetics, without inducing precipitation. This study emphasizes another parameter that modulates U(VI) toxicity for renal tubule cells and further characterizes the mechanisms of U(VI) toxicity.


Assuntos
Citratos/farmacologia , Meios de Cultura/análise , Nitrato de Uranil/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citratos/química , Túbulos Renais Proximais/citologia , Microscopia Eletrônica de Varredura , Modelos Biológicos , Ratos , Bicarbonato de Sódio/química , Bicarbonato de Sódio/farmacologia , Citrato de Sódio , Solubilidade , Nitrato de Uranil/química , Nitrato de Uranil/metabolismo
13.
Appl Environ Microbiol ; 72(9): 6414-6, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16957274

RESUMO

The accumulated organic form of selenium previously detected by X-ray absorption near-edge structure (XANES) analyses in Cupriavidus metallidurans CH34 exposed to selenite or selenate was identified as seleno-l-methionine by coupling high-performance liquid chromatography to inductively coupled plasma-mass spectrometry.


Assuntos
Burkholderiaceae/metabolismo , Selenometionina/metabolismo , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Poluentes Ambientais/metabolismo , Espectrometria de Massas , Ácido Selênico , Compostos de Selênio/metabolismo , Selenito de Sódio/metabolismo , Análise Espectral , Raios X
14.
Environ Sci Technol ; 40(24): 7778-83, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17256527

RESUMO

Isotope exchange methodology is invaluable to determine the solution-solid-phase distribution (Kd) and isotopically exchangeable concentration (Evalue) of elements in soils and sediments. This work examined the use of species-specific stable isotope exchange techniques to determine the Kd and E value of selenium (Se), as selenite (SeO3) and selenate (SeO4), in nine soils and sediments varying in concentration and source of Se. High-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) was used to quantify the isotope (e.g., 76Se, 78Se, 80Se, and 82Se) concentrations of the soluble Se oxyanions. The two Se oxyanions were detected in the solution phase of all of the soils and sediments. However, upon spiking the suspensions with stable isotope-labeled 78SeO3 and 76SeO4, it was observed that isotope self-exchange was insignificant to the derivation of Se oxyanion Kd and E values during 24 h (and up to 120 h in four of the samples). These results demonstrate that valid determinations of the Evalue of Se necessitate that the Se oxyanions are speciated in solution. This is clearly evident for these soils and sediments where it was observed that the Evalues of SeO3 and SeO4 represented, respectively, 5-97% and 3-95% of the total Se E value.


Assuntos
Sedimentos Geológicos/química , Selênio/análise , Poluentes do Solo/análise , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Isótopos , Cinética , Espectrometria de Massas
15.
Appl Environ Microbiol ; 71(5): 2331-7, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15870319

RESUMO

Ralstonia metallidurans CH34, a soil bacterium resistant to a variety of metals, is known to reduce selenite to intracellular granules of elemental selenium (Se(0)). We have studied the kinetics of selenite (Se(IV)) and selenate (Se(VI)) accumulation and used X-ray absorption spectroscopy to identify the accumulated form of selenate, as well as possible chemical intermediates during the transformation of these two oxyanions. When introduced during the lag phase, the presence of selenite increased the duration of this phase, as previously observed. Selenite introduction was followed by a period of slow uptake, during which the bacteria contained Se(0) and alkyl selenide in equivalent proportions. This suggests that two reactions with similar kinetics take place: an assimilatory pathway leading to alkyl selenide and a slow detoxification pathway leading to Se(0). Subsequently, selenite uptake strongly increased (up to 340 mg Se per g of proteins) and Se(0) was the predominant transformation product, suggesting an activation of selenite transport and reduction systems after several hours of contact. Exposure to selenate did not induce an increase in the lag phase duration, and the bacteria accumulated approximately 25-fold less Se than when exposed to selenite. Se(IV) was detected as a transient species in the first 12 h after selenate introduction, Se(0) also occurred as a minor species, and the major accumulated form was alkyl selenide. Thus, in the present experimental conditions, selenate mostly follows an assimilatory pathway and the reduction pathway is not activated upon selenate exposure. These results show that R. metallidurans CH34 may be suitable for the remediation of selenite-, but not selenate-, contaminated environments.


Assuntos
Ralstonia/metabolismo , Compostos de Selênio/farmacocinética , Selenito de Sódio/farmacocinética , Biodegradação Ambiental , Metais/farmacologia , Ralstonia/efeitos dos fármacos , Ácido Selênico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...