Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 9(20): 6929-6936, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28509924

RESUMO

Multilayered intercalation of 1-octanol into the structure of Brodie graphite oxide (B-GO) was studied as a function of temperature and pressure. Reversible phase transition with the addition/removal of one layer of 1-octanol was found at 265 K by means of X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The same transition was observed at ambient temperature upon a pressure increase above 0.6 GPa. This transition was interpreted as an incongruent melting of the low temperature/high pressure B-GO intercalated structure with five layers of 1-octanol parallel to GO sheets (L-solvate), resulting in the formation of a four-layered structure that is stable under ambient conditions (A-solvate). Vacuum heating allows the removal of 1-octanol from the A-solvate layer by layer, while distinct sets of (00l) reflections are observed for three-, two-, and one-layered solvate phases. Step by step removal of the 1-octanol layers results in changes of distance between graphene oxide planes by ∼4.5 Å. This experiment proved that both L- and A-solvates are structures with layers of 1-octanol parallel to GO planes. Unusual intercalation with up to five distinct layers of 1-octanol is remarkably different from the behaviour of small alcohol molecules (methanol and ethanol), which intercalate B-GO structure with only one layer under ambient conditions and a maximum of two layers at lower temperatures or higher pressures. The data presented in this study make it possible to rule out a change in the orientation of alcohol molecules from parallel to perpendicular to the GO planes, as suggested in the 1960s to explain larger expansion of the GO lattice due to swelling with larger alcohols.

2.
Nanoscale ; 5(4): 1529-36, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23314800

RESUMO

Detonation nanodiamond (ND) is a suitable source material to produce unique samples consisting of almost uniform diamond nanocrystals (d = 3-5 nm). Such samples exist in the form of long stable aqueous dispersions with narrow size distribution of diamond particles. The material is finding ever increasing application in biomedicine. The major problem in producing monodispersed diamond colloids lies in the necessity of deagglomeration of detonation soot and/or removing of clusters formed by already isolated core particles in dry powders. To do this one must have an effective method to monitor the aggregation state or dispersity of powders and gels prior to the preparation of aqueous dispersions. In the absence of dispersity control at various stages of preparation the reproducibility of properties of existing ND materials is poor. In this paper we introduce differential scanning calorimetry (DSC) as a new tool capable to distinguish the state of aggregation in dry and wetted ND materials and to follow changes in this state under different types of treatment. Samples with identical X-ray diffraction patterns (XRD) and high resolution transmission electron microscopy (HRTEM) images gave visibly different DSC traces. Strong correlation was found between dynamic light scattering (DLS) data for colloids and DSC parameters for gels and powders of the same material. Based on DSC data we improved dispersity of existing ND materials and isolated samples with the best possible DSC parameters. These were true monodispersed easily dispersible fractions of ND particles with diameters of ca. 3 nm.


Assuntos
Varredura Diferencial de Calorimetria/métodos , Cristalização/métodos , Diamante/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Coloides/química , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Pós , Propriedades de Superfície
3.
Dalton Trans ; 40(35): 8768-72, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21643616

RESUMO

Both dimeric µ-chlorine bridged and monomeric bidentate Pd(II) complexes with SCN hybrid pincer-type ligands, bearing thiophosphoryl group and imine moiety of the benzothiazole ring as coordination arms, formed in the reaction with (PhCN)(2)PdCl(2) under kinetic control (20 °C, dichloromethane solution) were readily converted into the corresponding SCN pincer complexes via solid phase synthesis (neat, 200 °C, 15 min). The synthesis of pincer complexes can be performed also by heating (200 °C, 5 min) of a homogeneous mixture of the initial reactants, namely, the ligand and (PhCN)(2)PdCl(2), obtained by manual grinding in a mortar. The efficacy of solid phase approaches is comparable with the analogous synthesis in solutions under severe conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA